Find the inverse of f(x)=3x−5
f-1(x)=x+5/3
Differentiate y=7x3
21x2
Simplify sin0∘
0
Write 3−4i in modulus-argument form
r=5, θ=−tan-1(4/3)
Find the magnitude of ⟨3,4⟩
5
State the domain of f(x)=1/x2−9
x≠±3
Find d/dx(ln(3x))
1/x
Solve sin x=1/2 for 0≤x<2π
x=π/6,5π/6
Multiply: (2+i)(3−2i)
8−i
Compute the dot product: ⟨1,2,3⟩⋅⟨4,5,6⟩
32
Solve log3(x)+log3(2x)=4
x=3
Evaluate ∫(2x+4) dx
x2+4x+C
Prove the identity:
tanx=sinx/cosx
Use definition tan x=opp /adj=sin x/cos x
Find all solutions of z2=−16
z=4i, −4i
Determine the angle between vectors if u⋅v=0
90o
The range of f(x) = √5 - 2x
y≥0
Find the derivative of y=xx
y′=xx(lnx+1)
Find the exact value: sin(75∘)
square root of 6 + square root of 2 divided by 4
Express 1/3−i in the form a + bi
3+i/10
Find the vector equation of a line through (1,2,3) in direction (2,-1,4)
r=⟨1,2,3⟩+t⟨2,−1,4⟩
Find the exact solution to e2x−5ex+6=0
x=ln2, x=ln3
Evaluate 01∫xex2 dx
e−1/2
Solve: 2cos2x−3cosx+1=0
cosx=1 or cosx=1/2
Solve z4=81 in polar form
z=3ei(πk/2), k=0,1,2,3
Find the distance from point (3,1,2) to the plane 2x−y+2z=10.
∣2(3)−1(1)+2(2)−10∣/ square root of 22 + (-1)2 +22 = 1