int (sin3(x)cos(x)dx)
sin4(x) / 4 +C
int ( e-8xdx)
- e-8x / 8 +C
int (x2-4x+6)dx from 1 to 8
259/3
Find the area between y=8x-x2 and y=2x
Calculate de volume of the solid obtained by revolving the region under de graph f(x)=x+3 over the interval [0,9]
V=567pi u3
int(cot (33x) dx)
ln ( sin (33x)) / 33 +C
int (e-x6(-6x5) dx)
e-x6 +C
int ( dx /cubic root ((8+4x)2)) form 0 to 14
3 / 2
Find the area between y=16-x2 and y=x2-2
A=72u2
Calculate de volume of the solid obtained by revolving the region under de graph f(x)=sqrt (x-1) over the interval [0,7]
V=18 pi u3
int (x31 sin (x32) dx)
- cos (x32) / 32 +C
int (ecos 27x sin(27x)dx)
-ecos 27x / 27 +C
int (x3(2x4+3)2dx)
49 / 12
Calculate de volume of the solid obtained by revolving the region under de graph f(x)=x+1 over the interval [0,2]
26 pi /3 u3
int (cos x / sin14 (x) dx)
- 1 / 13 sin13 (x) +C
int (4-x dx)
- 4-x / ln (4) +C
int ( 6 cos (pi(x)/2 dx) from 0 to 1
12 / pi
Find the area below y=16-x2 and the x-axis
A=256/3 u2
Calculate de volume of the solid obtained by revolving the region under de graph f(x)=2x+1 over the interval [0,3]
A=57 pi u3
int ( (sec (2x-56))2 dx)
-tan (2x-56) / 2 +C
int (x6 5x7 dx)
5x7 / 7ln (5) +C
int ( 1 / sqrt (3x +7) dx) from 3 to 6
2 / 3
Find the area below y=-4x+7 between [0,1]
A=5u2
Calculate de volume of the solid obtained by revolving the region under de graph f(x)=2sqrt (x+1) over the interval [0,3]