Given
y=2x^2-5
Fill in x = 3
2*32 - 5 = 2*9 - 5 = 18 - 5 = 13
3sqrt49-2sqrt121=
3*7 - 2*11 = 21 - 22 = -1
3sqrt7-sqrt7=
2sqrt7
sqrt(44)
2sqrt11
Given
Fill in x = 0
5+sqrt(0+9)=5+sqrt9=5+3=8
Given
y=-x^2+5
Fill in x=5
-52 + 5 = -25 + 5 = -20
sqrt(13^2-5^2)=
sqrt(169-25)=sqrt144=12
-5sqrt11*-2sqrt3=
10sqrt33
sqrt288
12sqrt2
Given 
Fill in x = 36
3+2sqrt36=3+2*6=3+12=15
Does point A(-4,4) lie on the graph of
Show workings.
-1/2*(-4)^2+4 = -1/2*16+4 = -8+4 = -4 so point A(-4,4) does NOT lie on the graph.
3sqrt121-5sqrt900=
3*11-5*30=33-150=-117
6sqrt10+5+2sqrt10-10=
8sqrt10-5
sqrt125-sqrt80
5sqrt5-4sqrt5=sqrt5
Given 
Does point B(-1, 10) lie on the graph?
Show workings.
3+2sqrt(-1+5)=3+2sqrt4=3+2*2=3+4=7
So no point B(-1, 10) doesn't lie on the graph.
Which of the following graphs make a cup parabola
y = 0,5x^2+4, y=-x^2-3, y=-4+2x^2, y=5-x^2
cup parabola, so a positive number in front of x2, so
y=0,5x^2+4 en
y=-4+2x^2
sqrt(9/144)=
3/12=1/4
-2(sqrt5)^2-(2sqrt5)^2=
-2*5-4*5=-10-20=-30
-sqrt(50)-5sqrt(162)=
-sqrt25*sqrt2-5sqrt81*sqrt2=-5sqrt2-5*9sqrt2=-5sqrt2-45sqrt2=-50sqrt2
Given y=1/2sqrt(1/9x)
Calculate x=36
1/2*sqrt(1/9*36)=1/2*sqrt4=1/2*2=1
sqrt(6 1/4) =
sqrt(25/4)=5/2=2 1/2
(-15sqrt32)/(3sqrt2)=
-5sqrt16=-5*4=-20