4.1
4.2
4.3
4.4
4.5
100

Does the table of values represent an inverse variation?

x  14  -2   6   -28

y   3   3  -21  -15

It is a inverse variation 

100

State end behavior 

y= (x+9)/(3x-4)

x→ -∞ ,f(x)→1/3

x→ ∞ ,f(x)→ 1/3

100

Simplify 

(x2+4-12)/(x2+5x+6)

(x-9)/(x+3)

100

Simplify  

(2x+23)/(x+7) + (2x-9)/(x+7) 

2(2x+7)/(x+7)

100

Solve for x 

(5x)/5 = 855/5

X=171

200

In a direct variation, x=8 and y=12 

what is the equation that represents the direct variation?

y=kx 

y=1.5x

200

write into translated form

f(x)= (8x-3)/(x+7)

f(x)= 18/(x+7) +18

200

Simplify 

(x2+4-12)/(x2-36)

(x+2)/(x+6)

200

Simplify  

(x+9)/2 + (x+13)/4

(3x+31)/4 

200

Solve for x 

x/(2x+6) = 2/(4x+12)

X=2, -1.5

300

In a direct variation, x=27 and y=9, 

when y=kx what is the value of y when x=4?

y=12

300

write into translated form

f(x)= (7x+4)/(x-5)

f(x)= -31/(x-5) +7

300

multiply

(x2+12+35)/(x2-3-28) × (x2-16)/(x2+1-20)

(x+7)/(x-7)

300

Simply

(x+22)/(x+4) + (7x-2)/(x+4)

2(4x+10)/(x+4)

300

Solve for x

9/(3x) = 8/(x-15)

X=-7

400

In a inverse variation, x=7 and y=-28

when y=kx what id the value of y when x=-5?

y=20

400

Write into translated form

f(x)= (3x+5)/(x-2)

f(x)= 11/(x-2) +6

400

Divide 

(x2-2-15)/x2-16) ÷ (x2+13+40)/(x2-7+12)

(x-3)/(x+4)(x+8)

400

Simplify

(x2-6x)/(x-8) - 16/(x-8)

(x+2)

400

Solve for x

(8x)/(x-3) = 10+ (6)/(x-3)

X=12