5.1 Identities
5.2 Proving Identities
More Identities
5.3 Solving Trig Equations
Random Math
100

The reciprocal identity for 

cos(x)

What is 

1/sec (x)?

100

The proof to the identity:  cos^2\theta /(1-cos^2theta) 

What is 

cos^2theta-1?

100

What is the reciprocal of: 

cotx

1/cotx or tanx?

100

All solutions to the equation in the interval  [0,2\pi) .  cos(x)=-sqrt3/2 

what is 

x=(2pi)/3,(4pi)/3

100

Solve for the missing trigonometric values.  sin⁡ x=1/2, cos⁡ x=sqrt3/2 

tanx=sqrt3/3 , cscx=2,secx=(2sqrt3)/3, cotx=sqrt3

200

The value of the following expression: 

sin^2 (x)+cos^2(x). 

What is 

1?

200

The proof to the identity:

sinx/cosx+cosx/sinx = secx\cdot cscx

 

sin^2x/(cosxsinx)+cos^2x/(cosx sinx)

1/(sinx cosx)

secx tanx

200

What is the reciprocal of: 

sinx/cosx

cosx/sinx or cotx

200

All solutions to the equation in the interval  [0,2\pi) . 2sintheta-1=0 

What is 

theta=pi/3, (2pi)/3

200

Find the missing angle. Write the general solution.

sin(2x)=-sqrt3/2

sin(t)=-sqrt3/2

t=2x

t=(4pi)/3, (5pi)/3

x=(2pi)/3+npi,n\in \mathbb{Z}

x=(5pi)/6+npi,n\in \mathbb{Z}

300

The simplified version of: 

1+tan^2(x). 

What is 

sec^2(x)?

300

The proof to the identity: 

sin\phi/(cos\phi )cot\phisin\phi=sin\phi

tanphicotphisinphi

1sinphi

sinphi

300

Rewrite using an identity: 

(3sinx)/cos^2x = 3tanxsecx


3 sinx/cosx 1/cosx

3tanxsecx

300

All solutions to the equation in the interval  [0,2\pi) .  cot(x)=sqrt3 

x=pi/6,(7pi)/6

300

What is the distance between the points  P=(-15,23)  and  Q=(-7,8) 

sqrt((-7-(-15))^2+(8-23)^2)

sqrt((8)^2+(15)^2)

sqrt(289)

17

400

The simplified version of: 

sin(x)/cos(x).

What is 

tan(x)?

400

The proof to the identity: 

sin^2\theta/(cos^2\theta)+cos^2\theta/cos^2theta=sec^2\theta

tan^2theta+1

sec^2theta

400

Rewrite using an identity:  sin\theta/sectheta+cos\theta/csctheta 

sin theta cos theta/1 +costhetasintheta/1

sinthetacostheta+sinthetacostheta

2sinthetacostheta

400

All solutions to the equation in the interval  [0,2\pi) .  3csc^2x-4=0 

csc^2x=4/3

cscx=+-2/sqrt3

sinx=+-sqrt3/2

x=pi/3, (2pi)/3, (4pi)/3, (5pi)/3

400

Write three ways to write  tan^2(\theta ) 

1/cot^2theta

sec^2theta-1

sin^2theta/cos^2theta

500

The simplified version of: 

cos^2(\theta)-1.

What is 

-sin^2(\theta)?

500

The proof to the identity: 

(1+cosx)/(1-sinx)=(secx+tanx)(secx+1)


((1+cosx)(1+sinx))/((1-sinx)(1+sinx))

(1+cosx+sinx+cosxsinx)/(cos^2x)

sec^2x+secx+tanxsecx+tanx

secx(secx+1)+tanx(secx+1)

(secx+tanx)(secx+1)

500

Rewrite using an identity: 

(5sin^2theta-11sintheta+2)/(5sintheta-1)=sintheta-2

((sintheta-10/5)(sin theta-1/5))/(5sintheta-1)

((sintheta-2)(5sin theta-1))/(5sintheta-1)

sintheta-2

500

All solutions to the equation in the interval  [0,2\pi)sec^2x-secx=2 

sec^2x-secx-2=0

(secx-2)(secx+1)=0

secx=2 or secx=-1

cosx=1/2 or cosx=-1

x=pi/3, (5pi)/3, pi

500

The distance between the top of my head and the top of my shadow If I am 72 inches tall and I cast a 52.32 inch shadow. Assume that the angle between me and the ground is a right angle.

Let d be the distance between the tip of the shadow and the top of my head. Then 

d^2=(72)^2+(52.32)^2

d=sqrt((72)^2+(52.32)^2)

d=sqrt(7921.3824)

d=89