GEMS
Radical functions
Graphing
Functions
RANDOM (Still math)
100

Solve for x: 2x+5=15

x=5

100

simplify √ 81 +√ 16

13

100

Given the equation, 2x+3=11

What is the y-intercept?

What is the slope?

What is the value of x in the equation?

11

2

4

100

How can you tell if a graph represents a function?

  • Use the vertical line test. If a vertical line intersects the graph at more than one point, it is not a function.

100

Solve x2-5x+6=0

x= 2 or 3

200

Solve for X: 3(x+4)=21

x=3

200

Simplify 2√ 5 * 3√ 5

30

200

Write the equation of a line with a slope of 2 and a y-intercept of -3.

y=2x-3

200

If f(x)=x2-3x+4 what is f(-2)?

f(-2)=4+6+4=14

200

A number is increased by 25% and then decreased by 20%. Is the final result greater than, less than, or equal to the original number?

Equal to

300

(x-5)/3=4

x=17

300

Solve √ 64x2

8x

300

What is the shape of the graph of a quadratic function, and how does the direction of the graph change based on the sign of the leading coefficient?

parabola 

negative down (frown)

positive up (smile)

300

If f(x)=3x-2, find the value of x such that f(x)=10

x=4

300

A graph shows the relationship between hours worked (x) and money earned (y) for a babysitting job. The equation is y=10x.

  • What does the slope represent in this situation?
  • If you work 6 hours, how much money will you earn?

Work in class

400
x2-6=3(3)+10

x=5

400

simplify √ 50

5√ 2

400

A line passes through the points (1,4) and (3,10).

  • Find the slope of the line.
  • Write the equation of the line in slope-intercept form (y=mx+by = mx + by=mx+b).
  • Graph the line on the coordinate plane, labeling at least two points.

Work through in class.

400

What is the inverse of the function f(x)=2x+5

f-1(x)=(x-5)/2

400

The equation y=−2x+3 is graphed on the coordinate plane.

  • Is the point (1,1)(1, 1)(1,1) a solution to the equation? Show your work.
  • Find two other points on the graph that are solutions. Label them on your graph.

 

Show in class

500

2(x-3)-5(x+2)=24

x=-4

500

√x=7

What is the value of x?

49

500

A line passes through the points (2,5) and (4,9).

  • Find the slope of the line.
  • Write the equation of the line in slope-intercept form (y=mx+by = mx + by=mx+b).
  • Graph the line on the coordinate plane, labeling at least two points.
  • As x approaches infinity y approaches infinity
  • As x approaches negative infinity y also approaches negative infinity
500

Solve this quadratic equation for the zeros:

2x2-3x+1

f(x)=0

x= 0.5 or 1

500

x2-6x+8=0

Find the solutions.

x= 4 or 2