What is one way you can classify a polynomial?
The number of terms in the polynomial
The degree of the polynomial
(4x2 + 2x) + (x2 + 6x)
5x2 +8x
(y2 - 10xy) - (2y2 + 3xy)
-y2 -13xy
(x + 4)(x - 2)
x2 + 2x - 8
Add the following:
(10x6) + (12x6)
22x6
How many terms are in a binomial?
2
(-3y2 + y) + (4y2 + 6y)
y2 +7y
(2x2 + 5x - 3) - (3x3 + 2x - 5)
-3x3 + 2x2 +3x + 2
(a + 3)(a − 2)
a2 + 1a − 6
How many terms are in a monomial?
1
Classify the following:
5x3+2x-1
Cubic Trinomial
(2a2 - 7a + 10) + (a2 + 4a + 7)
3a2 -3a +17
(-3a2 - 2a) - (4a2 - 4)
-7a2 - 2a + 4
(4m + 2)(4m + 5)
16m2 + 28m + 10
Multiply the following:
4x(6x3 - 20)
24x4-80x
a polynomial where the highest degree is 4 is called what?
Quartic
(2r2 - 5r + 7) + (3r3 - 6r)
3r3 + 2r2 -11r + 7
(4x3 + 5x + 2) - (1 + 2x - 3x2)
4x3 + 3x2 +3x + 1
(5b − 6)(5b 2 + 4b − 2)
25b3 − 10b2 − 34b + 12
Subtract the following
(9x3 - 6x2 + 7) - (15x3 - 4)
-6x3 - 6x2 + 11
Classify the following polynomial based on its degree:
6x4 + 8x5 - 2x
Quintic
(5r3 - 6r2 +3r) + (r2 -2r - 3)
5r3 - 5r2 + r - 3
(4 - x - 2x2) - (-2 + 3x - x3)
x3 - 2x2 - 4x + 6
(8n 2 + n − 4)(6n 2 − 6n − 4)
48n4 − 42n3 − 62n2 + 20n + 16
Multiply the following:
(x - 2)2
x2 - 4x + 4