Unit 6 - Solving Systems of Equations
Unit 7 - Exponents and Polynomials
Unit 8 -
Factoring
Unit 9 - Quadratic Functions
Unit 10 - Solving Quadratic Equations
100

At what coordinate point do they intersect?

𝑦 = βˆ’ 1/4π‘₯ + 6 

𝑦 = 3/4π‘₯ βˆ’ 2

(Hint: y = mx + b)

(8 , 4)

100

Simplify the expression:

(βˆ’π‘₯𝑦) 0

(Hint: π‘Ž0 = 1)

1

100

Find the greatest common factor:

51 and 119

GFC: 17

100

Evaluate the quadratic equation 

𝑓(π‘₯) = βˆ’π‘₯βˆ’ 7π‘₯ βˆ’ 10 when π‘₯ = 3

(3 , -40)

100

Solve the equation by factoring:

x- 9801

(-99 , 0) (99 , 0)

200

Draw BOTH linear equations and determine where they intersect with the plotted points.

𝑦 = βˆ’ 4 3 π‘₯ βˆ’ 5 

𝑦 = 2π‘₯ + 5

(-3 , -1)

Linear equations should make an X in 3rd quadrant 

200

Simply the expression:

2π‘π‘Ÿ-5

(Hint/example: 2y-3 = 2/y3)

2p / r5

200

Find the greatest common factor:

2π‘₯π‘Žπ‘›π‘‘ 5π‘₯

GFC: 1π‘₯ or π‘₯

200

Use factored form to solve for the vertex

𝑓(π‘₯) = βˆ’π‘₯(π‘₯ βˆ’ 4)

(2 , 4)

200

Solve using square roots: 

 y = 3(x + 7)2 - 24

x = -7 + 2√2

or

x = -7 - 2√ 2

300

Solve the equation by substituting

π‘₯ = βˆ’2𝑦 + 2 

3π‘₯ + 2𝑦 = 22

(22 , - 4)

300

Simplify the expression:

(2π‘₯2)2

(Hint: we are raising the power to a power)

4x4

300

Factor the polynomial:

βˆ’18π‘₯βˆ’ 9π‘₯+ 3π‘₯

(Hint: factor out the GCF)

-3π‘₯(6π‘₯2 + 3π‘₯ - 1)

300

What are the x intercepts AND the vertex?

𝑓(π‘₯) = βˆ’π‘₯2 + 2π‘₯ + 15

X intercepts: (5 , 0) (-3 , 0)

Vertex: (1 , 16)

300

Solve using the quadratic formula:

2x2 βˆ’ 3x βˆ’ 5 = 0

(5/2 , -1)

400

Solve the equation by elimination

6π‘₯ + 7𝑦 = 28

βˆ’6π‘₯ βˆ’ 𝑦 = -4

(Hint: eliminate by adding)

(0, 4)

400

Simplify the expression:

(βˆ’5𝑏 + 3 + 7𝑏3) + (𝑏2 βˆ’ 𝑏3 + 𝑏)

(Hint: Combine like terms)

6𝑏+ 𝑏- 4𝑏 + 3

400

Factor each polynomial: 

βˆ’4π‘₯2 βˆ’ 44π‘₯ βˆ’ 96

(Hint: write the answer as a binominal)

-4(π‘₯ + 8)(π‘₯ + 3)

400

Which way will the parabola open?

-(x + 2)2 - 2

Upwards

400

√45p2

3p√5

500

Solve the equation by elimination

7π‘₯ βˆ’ 9𝑦 = 15 

14π‘₯ βˆ’ 8𝑦 = βˆ’10

(Hint: eliminate by multiplying)

(-3 , -4)

500

Simplify the expression:

(3π‘Ž βˆ’ 4)(4π‘Ž2 + 5π‘Ž βˆ’ 8)

(Hint: answer should be in standard form) 

12π‘Ž3 - π‘Ž- 44π‘Ž + 32

500

Factor out the square roots: 

π‘₯- √145,924

(π‘₯ + 382)(π‘₯ - 382)

500

Complete the square and find the vertex:

𝑓(π‘₯) = π‘₯2+ 4π‘₯ βˆ’ 24


(Hint: put the answer in vertex form)

𝑓(π‘₯) = (π‘₯ + 2)2 - 28

           and

Vertex: (-2 , -28)

500

√72

6√2