Simplify
sqrt(36)
using rational exponents.
6
Convert
y^3.5
to radical form.
sqrt(y^7)
Simplify.
5^(1/2)*5^(1/2)
5
root(3)(6)*sqrt(2)
Cannot multiply; Different indexes
am x an = am+n
Product of Powers
Simplify
root(4)(16)
using rational exponents.
2
Convert
(root(5)(b))^3
to exponential form.
b^(3/5)
Simplify.
25^(-3/2)
1/125
sqrt(72x^3y^2)*sqrt(10xy^3)
12x^2y^2sqrt(5y)
(am)n = amn
Power of a Power
Simplify
root(3)(-27)
using rational exponents.
-3
Convert to exponential form.
sqrt(a^5)
a^(5/2)
Simplify.
4^(-3.5)
1/128
(sqrt(18x^5))/(sqrt(2x^3))
3x
a0=1
Zero Exponent
Simplify
root(3)(3^2)
using rational exponents.
3^(2/3)
Convert to exponential form.
root(4)(x^3)
x^(3/4)
Simplify.
4/(root(3)(1331))
4/11
sqrt(45x^5y^4)*sqrt(35xy^4)
15xy^4sqrt(7x^5)
(ab)m = ambm
Power of a Product aka distribute
Simplify
root(3)(-16^2)
using rational exponents.
-4(2^(2/3))
Convert to radical form.
w^(-5/8)
1/(root(8)(w^5))
Simplify.
(root(3)(x))/(root(6)(x^5))
(sqrt(x))/x
(root(3)(162y^5))/(root(3)(3y^2))
3yroot(3)(2)
a-m = 1/am
Negative Exponent