f(x) = 3x2
g(x) = x - 2
Find g(f(x)).
3x2 - 2
f(x) = x + 1
g(x) = x2 + 2
Find f(g(0))
3
f(x) = 3x
g(x) = x - 2
Find g+f(x).
f(x) = 3x - 2
f-1=(x+2)/3
Define term.
number and/* a variable
f(x) = x + 1
g(x) = x2 + 2
Find f(g(2))
7
f(x) = x + 1
g(x) = x2 + 2
Find g(f(3))
18
f(x) = 3x2
g(x) = x - 2
Find g(g(0)).
-4
Find the inverse.
g(x) = x2
g-1(x) = sqrt(x)
f(x) = x
g(x) = -x + 5
f(x) + g(x)
5
f(x) = x + 1
g(x) = x2 + 2
Find f(f(5))
7
f(x) = 3x2
g(x) = x - 2
Find g-g(x)
0
Find the inverse.
g(x) = sqrt(x - 2)
g-1(x) = x2 + 2
f(x) = 3x - 1 ; g(x) = 2x2 + 4
f+g(x)
2x2 + 3x - 3
f(x) = x + 1
g(x) = x2 + 2
Find g(f(5))
38
f(x) = 3x2
g(x) = x - 2
Find f(g(2)).
0
What are the three steps to get the inverse of a function?
Change into y = , swap x and y, solve for y
f(x) = 3x - 1 ; g(x) = 2x2 + 4
g-f(x)
2x2 - 3x + 5
f(x) = 3x2
g(x) = x - 2
Find g(f(1)).
1
f(x) = 3x2
g(x) = x - 2
Find f(x)/g(x).
3x + 6 + 12/(x-2)
When finding the inverse of f(x) = x3 - 27, what does it look like in the second step?
x = y3 - 27