Evaluating Functions
Composition of Functions
Composite Functions
Domain and Range
100

Given f(x) = 6/(x-3):

Find f(-3)

f(-3) = -1

100

Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:


Find g+h(x)

g+h(x) = x^2 + 4x - 6

100

Given f(x) = 6/x and g(x) = 4x+3:

Find f o g(x) --> f(g(x))

f o g(x) = 6/(4x+3)

100

See Domain / Range Doc:
What is the domain of the first graph?

domain: (-inf, inf)

200

Given g(x) = 3x^2 + 4x - 1:

Find g(4)

g(4) = 63

200

Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:
Find g-h(x):

g-h(x) = 5x^2 +4x + 4

200

Given g(x) = 4x+3 and f(x) = 6/x:

Find f(g(3))

f(g(3)) = 2/5

200

See Domain / Range Doc:
What is the Range of the first graph?

Range: [0, inf)

300

Given f(x) = 6/(x-3):

Find f(x+3)

f(x+3) = 6/x

300

Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:
Find f/g(x):

f/g(x) = (3x^2 + 4x - 1) / (-2x^2 -5)

300

Given h(x) = 2x^2 and j(x) = sqrt(x+4):

Find j(h(x)):

j(h(x)) = sqrt(2x^2 + 4)

300

See domain / range doc:
What is the range of graph 2?

Range: [0,inf)

400

Given: h(x) = -2x^2 - 5:

Find h(4x):

h(4x) = -32x^2 - 5

400

Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:

Find f * g(x)

f*g(x) = -6x^4 - 8x^3 - 13x^2 -20x +5

400

Given h(x) = 2x^2 and j(x) = sqrt(x+4):

Find h(j(x)):

h(j(x)) = 2x+8

400

See Domain / Range Doc: What is the domain of graph 2?

Domain: [2,inf)

500

Given f(x) = 6/(x-3):
Find -f(x):

-f(x) = -(6/(x-3))

500

Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:
Find g-h(3):

g-h(3) = 61

500

Given: k(x) = x/(x-2) and j(x) = 2x^2:
Find k(j(x))

k(j(x)) = (2x^2) / (2x^2 - 2) OR (x^2 / (x^2 - 1))
500
See Domain / Range Doc:

What is the range of graph 3?

Range: (-inf, inf)