Rational Exponents
Properties of Rational Exponents
Properties of radicals
Function Operations and Compositions pg.13
Solving Radical Equations
100

∜-16

2i

100

(x^⅓ ⋅ y^¼)³

xy^¹⁄₃

100

∛125 ⋅ ∛8

10

100

g(-3/4)

17/8 or -2 1/8

100

x - 6= √3x

(x - 12)(x - 3)

200

∛-64

4i

200

(x⁶ ⋅ y⁶)^-⅙

1/xy

200

∛104

2∛13

200
j(16)

40

200

⁵√3x + 12= -3

x= 77

300

Rewrite this rational exponent

∛12

12^⅓

300

(32m⁵n²⁰)^⅕

2mn⁴

300

2/∜x^3

2x√x/x

300

f(g(3))

74

300

∛x - 16 - 3= 1

x= 20

400

Rewrite this rational exponent

(⁸√15)⁵

15^⅝

400

56ab^3/4 / 7a^⅚c⁻³

8a¹⁄²b³⁄⁴c³

400

√20 - ∛16 + ∛250 -√5

3∛2+√5

400

h(-6)+g(1)

3.4

400

∛4x + 2 - 6= -10

x= -249

500

n=6, a=-960

2i⁶√15

500

(24x^-6/64)^⅓

3/4x²

500

(2x-∜6)(x+3∜8)

2x + 6x∜8 - x∜6 - 6∜3

500

j(9)-f(-2)

27

500

What is the solution to the equation

(x² + 5x + 25)^³⁄₂ = 343

A. -8  B. 3   C. 77  D. -8 and 3  C. No solution

B. 3 only