Transformations
Solving Absolute Values
Inverses of Functions
Function Composition
Operations with Functions
100

Describe the transformations of the following function in reference to the parent function.

f(x) = 1/2abs(x)-3

vertical shrink by a factor of 1/2, vertical translation down 3

100

Solve for x.

6 + abs(9 + x) = 22

x = 7, -25

100

These are the steps for algebraically calculating a functions inverse.

1. Switch x & y variables

2. Solve for y (or dependent variable)

3. Label with proper inverse notation

100

Given  f(x) = 2x-5  &  g(x) = 3x+7 

find  f(g(x)) 

f(g(x)) = 6x + 9

100

Given:  f(x) = 2x+1   g(x) = -3x+5 and  h(x) = 7x 

Find  (f+h)(x)

 (f+h)(x) = 9x+1 

200

Describe the transformations of the function below, f(x), in reference to the parent function, p(x)

 p(x) = absx, f(x) = -3/2abs(x + 6)+2 

-reflection over the x-axis

-vertical stretch by a factor of 3/2

-horizontal translation left 6

-vertical translation up 2

200

Solve for x.

2abs(x - 4) + 3 = -19

no solution

200

Given f(x), find  f^-1(x)

f(x) = 2x - 5

f^-1(x) = (x + 5)/2

200

Given  f(x) = 2x-5  &  g(x) = 3x+7 

find  f(g(3))

f(g(3)) = 27

200

Given:  f(x) = 2x+1   g(x) = -3x+5 and  h(x) = 7x 

Find  (f-g)(x)

(f-g)(x) = 5x-4

300

Create a new function, k(x), that transformations the absolute value parent function, p(x), in the follow ways:

-reflection over the x-axis

-vertical stretch by a factor of 2

-horizontal translation right 3

 k(x) = -2abs(x - 3) 

300

Solve for x. Write your answer in inequality notation.

-8abs(x - 10) < -112

x < -4 or x > 24

300

This is the way to graphically determine if two functions are inverses.

1. There is symmetry across  y = x 

2. The domain & range switch

300

Find  r(q(-2)) given: 

q(x) = 1/2(x - 4)

r(x) = 3x + 10

r(q(-2)) = 1

300

Given:  f(x) = 2x+1  g(x) = -3x+5 and  h(x) = 7x 

Find  (h*g)(x)

 (h*g)(x) = -21x^2+35x 

400

Describe the transformations of the function below, h(x), that transform the parent function, f(x)

h(x) = -3f(x-2)

-vertical stretch by a factor of 3

-reflection over the x-axis

-horizontal translation right 2

400

Solve for x.

4abs(7x + 1) + 5 = 9

x = 0, -2/7

400

This is the way to algebraically determine if two functions are inverses.

f(f^-1(x)) = x & f^-1(f(x)) = x

400

Find  q(r(x)) given: 

q(x) = 1/2(x - 4)

r(x) = 3x + 10

q(r(x)) = 3/2x + 1

400

Given:  f(x) = 2x+1   g(x) = -3x+5 and  h(x) = 7x 

Find  (f/g)(x)

 (f/g)(x)=(2x+1)/(-3x+5); xne5/3 

500

Describe the transformations of the functions:

f(x) = -5/4f(x + 3) - 5

-vertical stretch by a factor of 5/4

-reflection over the x-axis

-horizontal translation left 3

-vertical translation down 5

500

Solve for x. Write you answer in interval notation

abs(x + 5)/2<= 2

Hint: Graph the solutions on a number line then write the interval notation.

[-9, -1]

500

Given f(x), find   f^-1(x) 

f(x) = (2x - 3)/7

f^-1(x) = (7x + 3)/2

500

Given:  f(x) = 5x - 7

Find  f(f(x)) 

 f(f(x)) = 25x - 42 

500

Given:  f(x) = 2x+1   g(x) = -3x+5 and  h(x) = 7x 

Find  (f*g)(3)

 (f*g)(3)=-28