Expanding brackets using the distributive law
Laws of Indices
Factorization and

Substitution
Binary operations
Simplifying expressions
100

8(7x−4y)

56x−32y


100

a3*a4


a7


100

mx+my+2x+2y


(x+y)(m+2)

100

If A =3, B=9 what is 2ab

54


100

z−1+3

z+2


200

12(a−b)

12a−12b


200

x3/x2

x1

200

qx+py+px+qy 

(x+y)(p+q)


200

If M=4 what is 2(m+4)

16


200

y3−6+y2

y3+y2−6


300

2(x-3)

2x-6


300

q-8

1/q8


300

xy+ay+xx+ax

(x+y)(a+x)

300

a*b=2a+3b what is 2*1

7


300

x+x−6

2x−6

400

9(5ad+6ac)

54ac+45ad


400

(x-2)4


x-8

400

3(x+y)+7(x+y)+20


10(x+y+2)

400

a*b=3a+b what is 6*4

22


400

a2-1+4

a2+3


500

4(4abc+6xyz)

16abc+24xyz


500

(y3)3

y9

500

6a2b3-3a4b2-7a4c

a2(−3a2b2−7a2c+6b3)

500

a*b=3a+b what is 4*6

18


500

2(x+4)+2(x−5)−2y

4x−2y−2