Brøker
3/5 + 1/4
17/20
34 * 37
x2 = 9
x = 3 v x = -3
x = y + 2
x + y = 4
(x,y) = (3,1)
(x+1)2
x2 + 1 + 2x
1/4+2/3*5/2
23/12
(25*2-3)/2
2
x2 - 8x = 0
x = 0 v x = 8
2x + 3y = 5y + x + 5
2x + 3y = 17
(a - 3b)2
a2 + 9b2 - 6b
ab * (1/a)b
1
x2 + 3x + 2 = 0
x = -1 v x = -2
3x + 6y = 9x - 12
4y = 4x - 4
(x,y) = Ø
(x+3)(x-3) - (x-1)2
2x - 10
a/(b+2)*(a+2)/(b+1)
(a^2+2a)/(b^2+3b+2)
(a3)6*(ab)-4
a14b-4
4x2 - 16x = 20
x = 5 v x = -1
3x + y = 5 + x
10 - 4x - 2y = 0
y = -2x + 5
sqrt(x2 + 4x + 4)
x+2
((a+1)/3) / ((2(a+1)/9))
3/2
27-1/3 * (3a)2 * a-4
3*a-2
(x+1)(x+2) = x + 1
x = -1
3x2 + 3y = 4
6x2 - 2y = -8(x,y) = Ø
sqrt(sqrt(x2 - 2x + 1) + (x+1)(x-1) + x + 3)
x+1