Brøker
Potenser
Andengradsligninger
Kvadratiske lignigssystemer
Kvadratsætninger
100

3/5 + 1/4

17/20

100

3* 37

311
100

x= 9

x = 3 v x = -3

100

x = y + 2

x + y = 4

(x,y) = (3,1)

100

(x+1)2

x2 + 1 + 2x

200

1/4+2/3*5/2

23/12

200

(25*2-3)/2

2

200

x2 - 8x = 0

x = 0 v x = 8

200

2x + 3y = 5y + x + 5

2x + 3y = 17


(x,y) = (7,1)
200

(a - 3b)2

a2 + 9b2 - 6b

300
a/b+(a+b)/a
(a^2+ab+b^2)/(ab)
300

ab * (1/a)b

1

300

x2 + 3x + 2 = 0

x = -1 v x = -2

300

3x + 6y = 9x - 12

4y = 4x - 4

(x,y) = Ø

300

(x+3)(x-3) - (x-1)2

2x - 10

400

a/(b+2)*(a+2)/(b+1)

(a^2+2a)/(b^2+3b+2)

400

(a3)6*(ab)-4

a14b-4

400

4x - 16x = 20 

x = 5 v x = -1

400

3x + y = 5 + x

10 - 4x - 2y = 0 

Sandt for alle (x,y) i de reelle tal, hvor:


y = -2x + 5

400

sqrt(x2 + 4x + 4)

x+2

500

((a+1)/3) / ((2(a+1)/9))

3/2

500

27-1/3 * (3a)2 * a-4

3*a-2

500

(x+1)(x+2) = x + 1

x = -1

500

3x+ 3y = 4

6x2 - 2y = -8

(x,y) = Ø

500

sqrt(sqrt(x2 - 2x + 1) + (x+1)(x-1) + x + 3)


x+1