Solving
Simplifying
Expanding
Factorising
Linear Patterns
100

6a = 54

a = 9

100

10b - 3b = 

10b - 3b = 7b

100

Expand 5(a + 6)

5(a + 6) = 5a + 30

100

Factorise 4a + 16

4a + 16 = 4(a + 4)

100


m = 4p + 1

200

x/7=4

x = 28

200

3a2 x 2b4 x a6

6a8b4

200

Expand  -y(5 - 7y)

 -y(5 - 7y) = -5y  + 7y2

200

Factorise 

16a2 + 8a

16a2 + 8a = 8a(2a +1)

200

y = 3x - 2 

What is the gradient?

What is the y-intercept?

Gradient = 3

Y-intercept = -2

300

3x - 10 = -1 

x = 3

300

(6x^3y^8)/(24x^5y^4)

y^4/(4x^2)

300

Expand  3a( 2 - 4a3)

3a( 2 - 4a3) = 6a - 12a4

300

Factorise

10x + 40y + 60z

10x + 40y + 60z = 10(x + 4y + 6z)

300

What is the rule for this pattern?

3n -2

400

-2(3 - x) = 10

x = 8

400

-7x2 + 5x - 7x + 10x2

3x2 - 2x

400

Expand

(x + 2)(x + 3)

(x + 2)(x + 3) = x2  + 5x + 6

400
Factorise


x2 + 3x + 2

x2 + 3x + 2 = (x + 1)(x+2)

400

What is the rule for this pattern?

-4n +17

500

5x - 10 = - 4x +8

x = 2

500

((2x^3)^2)/(4x^2y^3)

(x^4)/(y^3)

500

Expand 

(x - 4)(x + 8)

(x - 4)(x + 8) = x2 + 4x - 32

500

Factorise

x- 9x -10

x- 9x -10 = (x + 1)(x - 10)

500

What is the equation of this line?

y = 2x -3