Unit 1 - Functions
Unit 2 - Quadratics
Unit 3 - Polynomials
Unit 4 - Rationals
Unit 5 - Radicals / Exponents
100

Use f(x) = 2x- x + 5 and g(x) = 2x - 3 to find (f+g)(-2)

8
f(-2) =15
g(-2) = -7

100

Solve for x: 4x2 + 12x = 0

4x(x+3) = 0
x = 0, -3

100

Perform the Indicated Operation: (3x2 + 8x - 3) + (-5x2 + 4x + 6)

-2x2 + 12x + 3

100

Simplify:
(x2 - 25) / 2x- 8x - 10

(x+5)(x-5) / 2(x-5)(x+1)

= (x+5) / 2(x+1)
100

Simplify x5/4 / x5/3

1/x5/12

200

Find the Average Rate of Change of g(x) = 2x - 3 from x = 1 to x = 3

f(3) = 3
f(1) = -1
(3+1) / (3 - 1) 

m = 2

200

Solve for x:
2x2 - 23 = x2 - 11

x2 = 12
x = +/- 2sqrt(3)

200

Perform the Indicated Operation: (2x -7)(2x + 7)

4x2 - 49

200

Simplify: (x- 2x - 8 / 8x+ 16x2) * (2x- 8 / x2 - 6x + 8)

= (x+2) / 4x2
((x-4)(x+2) / 8x2(x+2)) * ((2(x-2)(x+2) / (x-4)(x-2)) 

200

Simplify / Evaluate:

(8)1/4 + 9(8)1/4

10(8)1/4

300

Use f(x) = 2x- x + 5 and g(x) = 2x - 3 to find
f o g(-1)

60
g(-1) = -5
f(-5) = 60

300

Perform the indicated operation: (1+5i)(7-4i)

7+35i-4i-20i2
27 + 31i

300

Is x+1 a factor of x4 - x3 + 2x - 8?

f(-1) = -8, No! 

300

Solve for x:
-4 / (x+4) = -3 / (x+6) 

-3(x+4) = -4(x+6)
-3x - 12 = -4x - 24
-x = 12
x = -12

300

Convert and Simplify:
cbrt(642)

cbrt(64) = 4
42 = 16

400

Write the function h(x), whose graph is the graph f(x) = sqrt(x) but shifted left 3 units, reflected over the x axis, and shifted up 7 units.

h(x) = sqrt(x+3) + 7

400

Perform the indicated operation: (3-2i)2

(3-2i)(3-2i) = 9 - 12i + 4i2
5 - 12i

400

Factor and solve: x4 - x2 - 72

(x2-9)(x2+8)
x = +/- 3, +/-2i sqrt(2)

400

Simplify:
((x-1) / (x+2)) - (3 / (x+1))

(x2-3x-7) / (x-1)(x+2)

400

Solve for x:
sqrt(x+3) + 2 = 5

x + 3 = 9
x = 6

500

Given a point (-1,5) on a function f(x), what point is on the function f(x-5)+3 ?

right 5, up 3
(4,8)

500

Using the function f(x) = 3x- 6x + 5, find the vertex of the function, and write the equation in vertex form, a(x-h)2 + k

Vx = -b / 2a = 6/6 = 1
Vy = f(1) = 2
Vertex: (1,2)
a value: 3
Vertex Form: 3(x-1)2 + 2

500

Find a degree 3 polynomial function with the following zeros:  2 and -3i. Give the polynomial function in standard form.

(x-2)(x+3i)(x-3i)

(x-2)(x2+9)

x3-2x2+9x-18

500

Solve for x:
(3 / (x2+5x+6)) - (7 / (x+3)) = ((x-1)/(x+2))

LCD: (x+3)(x+2)

3 - 7(x+2) = (x+3)(x-1)

x+ 9x + 8 = 0
x = -8,-1

500

Solve:
x2/5 + 10 = 14

x2/5 = 4
x = 45/2 (even root, +/-)
x = 2= +/- 32