Lessons 1 - 20
Lessons 21-40
Lessons 41 - 70
Lessons 74 - 100
100

Evaluate 4x - 5x²y if x = 2 and y = -5

108

100

Solve the systems of equations by substitution.          y - 4x = 3                                                                                 4y - x = -12

(-8/5, -17/5)

100

Find the difference between the points (-2, 7) and (8, 4). Round to the nearest 10th.

10.4

100

Find and use the discriminant to describe the roots of the equation 5x² + 45 = 40x

Discriminant: 700, two real roots

200

Solve for matrix x.

 x - [ 5 2  = [ 4 7

        6 3 ]    5 -9 ]

x = [ 9 9

      -1 -6 ]

200

Identify any excluded values. Simplify. (3x² + 18x + 27)/(5x² + 40x + 75)

Excluded values: x = -3, x = -5   3(x + 3)/5(x + 5)

200

The leg of a 45°-45°-90° triangle is 6 cm. Find the length of the other leg and the hypotenuse.

Leg: 6 cm, Hypotenuse: 6√2 cm

200

Rewrite the expression as a sum or difference of terms and simplify ln(4x³/e²)³

3ln4 + 12lnx - 6

300

Classify the polynomial by degree and number. -7x⁵ + 3x⁴ - 5x³

Quintic trinomial

300

Multiply and evaluate for a = 6, b = 2. (6ab²)/(4b²) • (15a²b²)/(5ab³)

(9a²)/(2b)

300

The box contains 6 blue and 4 black socks. What are the odds in favor of picking a blue sock?

3/2

300

Find a₅ given that a₄ = 40 and a₇ = 1080

a₅ = 120

400

Find x. | x+2    6 |  = 3

           |   5     3  |

x = 9

400

Write a quadratic function that has zeros -7/4 and 1.

4x² + 3x - 7

400

Solve x² + 64 = 0. Write in terms of i.

±8i

400

Find a₇ of an arithmetic sequence given that a₃ = 37 and a₁₀ = 65

a₇ = 53

500

Multiply (r + 4)(r - 5)(r + 2)

r³ + r² - 22r - 40

500

Divide using long division: (x⁴ - 4x³ - 15x² - 32x - 30) by (x + 3)

x³ + x² - 18x + 22 - (96/(x - 3))

500

Write in the form of a + bi. (6 + 7i)(8 - 4i)

76 + 32i

500

Write the equation of the circle with endpoints at (6, 4) and (2, 3)

(x - 4)² - (y - 3.5)² = 17