√10 (√2 +2)
2√5 + 2√10
y = 1/x
Vertical asymptote at x=0
Horizontal asymptote at y=0
√(110 - n) = n
10
6/(x-1) - (5x)/4
(24 − 5x2 + 5x) / 4(x − 1)
y = x3+75
x→ +∞ y→+∞;
x→ -∞ y→-∞
domain (-∞,+∞)
range (-∞, +∞)
-∛(-135) - ∛(40)
∛5
y = (x-3) / (x+21)
Vertical Asymptote: x=-21,
Horizontal Asymptote: y=1
√(5x-4) - 9 = 0
((x/25) - (x/5)) / x
-4/25
y = x2+x+1
x→ +∞ y→+∞;
x→ -∞ y→+∞
domain (-∞,+∞)
range [3/4, +∞)
√(28x3y3)
2xy √(7xy)
y= (3x-5) / (4x2-x-3)
Vertical asymptote: x=-3/4 & x=1
Horizontal asymptote: y=0
4√(3x−2) + 3 = 5
x = 6
(5x+5)/(5x2+35x-40) + (7x)/(3x)
(7x2+52x-53) / 3(x+8)(x-1)
y = x / (x2-6x+8)
Don't find the range
x→ +∞ y→0;
x→ -∞ y→0
domain (-∞,2)∪(2,4)∪(4,+∞)
range (-∞, -√2-1.5)∪(√2-1.5, +∞)
7√(512u8v3)
2u 7√(4uv3)
y= (5x2+14x+8) / (x2-9x-22)
Vertical asymptote: x=11
Horizontal asymptote: y=5
Hole : x=-2 (-2, 6/13)
√(2x-5) + √(2x) = 5
x = 9/2
x - (1/y) - (x2 /(x-y))
(-xy2-x+y) / (y(x-y))
y = √(x-5) + 2
x→ +∞ y→+∞;
domain [5,+∞)
range [2,+∞)
4√(48x4y7) - 4√(648x2y5)
2xy 4√(3y3) - 3y 4√(8x2y)
(x-4)(x+7)(2x+5)
Vertical asymptote: x=-7 & x=5/2
Horizontal asymptote: y=0
Hole: x=4 (4, 3/11)
√(2x-12) - x = 6
x = -6, -4
5x/(1-2x) - 2x/(2x+1) + 3/(4x2-1)
(-14x2-3x+3) / (2x+1)(2x-1)
y = x-3 + 3x
dont find range
x→ +∞ y→+∞;
x→ -∞ y→-∞
domain (-∞,0)(0,+∞)
range (-∞,-4) (4, +∞)