Simplify Radicals
Find the Zeros/Asymptotes/Holes
Solve Radicals
Adding/Subtracting rational expressions
End Behavior/ Domain/Range
100

√10 (√2 +2)

2√5 + 2√10

100

y = 1/x

Vertical asymptote at x=0

Horizontal asymptote at y=0


100

√(110 - n) = n

10

100

6/(x-1)    -     (5x)/4

(24 − 5x2 + 5x)    /       4(x − 1)

100

y = x3+75

x→ +∞   y→+∞;

x→ -∞    y→-∞

domain (-∞,+∞)

range (-∞, +∞)

200

-∛(-135) - ∛(40)

∛5

200

y = (x-3) / (x+21)

Vertical Asymptote: x=-21,

Horizontal Asymptote: y=1

200

√(5x-4) - 9 = 0

x = 17
200

((x/25)  -   (x/5))     /   x

-4/25

200

y = x2+x+1

x→ +∞   y→+∞;

x→ -∞    y→+∞

domain (-∞,+∞)

range [3/4, +∞)

300

√(28x3y3)

2xy √(7xy)

300

y= (3x-5) / (4x2-x-3)

Vertical asymptote: x=-3/4 & x=1

Horizontal asymptote: y=0

300

4√(3x−2) + 3 = 5 

x = 6

300

(5x+5)/(5x2+35x-40)    +   (7x)/(3x)

(7x2+52x-53) / 3(x+8)(x-1)

300

y = x / (x2-6x+8)  

Don't find the range

x→ +∞   y→0;

x→ -∞    y→0

domain (-∞,2)∪(2,4)∪(4,+∞)

range  (-∞, -√2-1.5)∪(√2-1.5, +∞)

400

7√(512u8v3)

2u 7√(4uv3)

400

y= (5x2+14x+8) /       (x2-9x-22)

Vertical asymptote: x=11

Horizontal asymptote: y=5

Hole : x=-2    (-2, 6/13)

400

√(2x-5) + √(2x) = 5

x = 9/2

400

x  -   (1/y)  -   (x2 /(x-y))

(-xy2-x+y)  /  (y(x-y))

400

y = √(x-5)  + 2

x→ +∞   y→+∞;


domain [5,+∞)

range  [2,+∞)

500

4√(48x4y7) - 4√(648x2y5)

2xy 4√(3y3) -  3y 4√(8x2y)

500
y = (3x-3)(x-4)    /

      (x-4)(x+7)(2x+5)

Vertical asymptote: x=-7  &  x=5/2

Horizontal asymptote: y=0

Hole: x=4    (4, 3/11)

500

√(2x-12) - x = 6

x = -6, -4

500

5x/(1-2x)   -   2x/(2x+1)   +  3/(4x2-1)

(-14x2-3x+3)   /  (2x+1)(2x-1)

500

 y = x-3 + 3x

dont find range

x→ +∞   y→+∞;

x→ -∞    y→-∞

domain (-∞,0)(0,+∞)

range (-∞,-4) (4, +∞)