No Calculator
Linear & Systems
Exponents and Radicals
Functions
Word Problems
100

3x − 7 = 11

3x − 7 = 11

3x = 18

x = 6

100

5x + 3 = 18

5x = 15

x = 3

100

x^2 * x^3

x² · x³ = x^(2+3)

= x⁵

100

If f(x) = x + 4, find f(6).

f(6) = 6 + 4

= 10

100

A number increased by 6 is 15. Find the number.

x + 6 = 15

x = 9

200

(2x + 4) / 2 = 6

(2x + 4)/2 = 6
2x + 4 = 12
2x = 8
x = 4

200

2x - 5 = 9

2x = 14

x = 7

200

Simplify: (x³)²

(x³)² = x^(3×2)

= x⁶

200

If f(x) = 2x − 3, find f(5).

f(5) = 2(5) − 3

= 10 − 3

= 7

200

Twice a number minus 3 equals 11. Find the number.

2x − 3 = 11
2x = 14
x = 7

300

Simplify:

(2x^2y)(3xy^3)

Multiply coefficients: 2 × 3 = 6

Add exponents of x: x² · x = x³

Add exponents of y: y · y³ = y⁴

Final: 6x³y⁴

300

3(x − 2) = 12

x − 2 = 4

x = 6

300

Simplify: √49

√49 = 7

300

If f(x) = x² − 1, find f(4).

f(4) = 4² − 1

= 16 − 1

= 15

300

A number decreased by 4 is three times the number. Find the number.

x − 4 = 3x

−4 = 2x

x = −2

400

If f(x) = 2x² − 3x, find f(4).

f(4) = 2(4²) − 3(4)

= 2(16) − 12

= 32 − 12

= 20

400

(3x - 4)/2 = 5

3x − 4 = 10

3x = 14

x = 14/3

400

Simplify: √18

√18

= √(9 × 2)

= √9 · √2

= 3√2

400

If f(x) = 3x² − 2x, find f(3).

f(3) = 3(3²) − 2(3)

= 3(9) − 6

= 27 − 6

= 21

400

The sum of a number and twice that number is 45. Find the number.

x + 2x = 45

3x = 45

x = 15

500

A rectangle has perimeter 30.

The length is 2W + 3.

Find the width W.

Substitute L:


2(2W + 3) + 2W = 30

4W + 6 + 2W = 30

6W + 6 = 30

6W = 24

W = 4

500

Solve the system:

x + y = 8

x - y = 2

x + y = 8

x − y = 2

2x = 10

x = 5

Substitute into x + y = 8:

5 + y = 8

y = 3

500

Solve: x² − 9 = 0

x² − 9 = 0

x² = 9

x = ±3

500

If f(x) = x² − 2x + 1, find f(5).

f(5) = 5² − 2(5) + 1

= 25 − 10 + 1

= 16

500

One number is 5 more than another. Their sum is 25. Find the numbers.

x + x + 5 = 25

2x + 5 = 25

2x = 20

x = 10