vector addition
vector subtraction
Magnitude of Vector
Direction of Vector
Linear Combinations
100

<3,5> + <9,2>

What is <12,7>

<3+9,5+2> = <12,7>

100

<3,2> - <7,1>

What is <-4,1>

<3-7,2-1>=<-4,1>

100

<3,9>

What is √90 

√(3)2+(9)2=√9+81=√90

100

<4,7>

What is 1.0517 radians or 60.251 degrees

tan-1(7/4)

100

<6,2>

6i+2j

200

<-7,22>+<3,-10>

What is <-4,12>

<-7+3,22+(-10)>=<-4,12>

200

<-13,12> - <12,-2>

What is <-25,14>

<-13-12,12+2>=<-25,14>

200

<6,6>

What is √72

√(6)2+(6)2=√36+36=√72

200

<9,3>

What is 0.3218 radians or 18.4349 degrees 

tan-1(3/9)

200

<1,-4>

i-4j

300

<3,9>+<-4,4>

What is <-1,13>

<3+(-4),9+4>=<-1,13>

300

<6,4> - <6,-3>

What is <0,7>

<6-6,4+3>=<0,7>

300

<3.5,9>

What is √93.25

√(3.5)2+(9)2=√12.25+81=√93.25

300

<3.19,5>

What is 1.0029 radians or 57.4621 degrees

tan-1(5/3.19)

300

<-7,9>

-7i+9j

400

(3i+2j)+(4i+5j)

What is (7i+7j)

((3i+4i)+(2j+5j))=(7i+7j)

400

(4i-3j)-(2i+4j)

What is (2i-7j)

((4i-2i)+(-3j-4j))=(2i-7j)

400

<1.25,12.63>

What is √161.0794

√(1.25)2+(12.63)2=√1.5625+159.5169= √161.0794

400

<-6,5>

What is -0.6947 radians or -39.8056 degrees

tan-1(5/-6)

400

(6,2)      and     (9,4)

3i+2j

500

(5i-2j)+(3i+3j)

What is (8i+1j)

((5i+3i),(-2j+3j))=(8i,1j)

500

(3i-3j)-(4i+2j)

What is (-i-5j)

((3i-4i)+(-3j-2j))

500

<0.1,0.3>

What is √0.1

√(0.1)2+(0.3)2= √0.01+0.09=√0.1

500

<9.23,-2.2>

What is -0.234 radians -13.4065 degrees

tan-1(-2.2/9.23)

500

(-7,14)   and   (-4, -8)

3i - 22j