Cyclical functions when graphed look like:
A. a straight line
B. U shaped
C. A sine wave
D. A happy face
C. A Sine wave
100
Solve
4x-6=14
5
100
Solve
4+8*4
36
100
What is the COS of 67 degrees rounded to the nearest thousandth?
.39073
answer: .391
200
A line with a negative slope will go_________?
Down
200
For this Sinusoidal function, what is "A" and what does it represent?
y=300sin(0.524(x+3.139))+400
300, the amplitude
200
Solve:
1/2 x+16=56
80
200
3*2+8-2*8
6+8-16
-2
200
Enter the function f(x)=-2x^2-4x+13 into your graphing calculator. Select Menu/window/zoom-fit if necessary to see the graph. Describe the shape and the direction it faces.
U Shape facing downwards
300
Write a function for the following situation.
How much will Sam, a truck driver, get paid for his delivery if he gets $400 at the beginning of the trip and $0.89 per mile.
f(x)= $.89x + $400
300
For a cyclical function, the very top of the wave is referred to as the _________.
crest
300
Solve:
5x+4x-3=6x+15
x=6
300
12+4*2(30-12*2)^2
12+8(6)^2
12+8*36
300
300
What is 8 to the 8th power?
16777216
400
How much did Jimmy get paid if he was given $150 up front, and $175 for each of the 5 cars he sold?
$1025
400
For this sinusoidal function, what is the maximum?y=300sin(0.524(x+3.139))+400
400+300=700
400
3(12+8)^2
400*3=1200
400
With the following problem, what must you do first?
3-6+5
a. 3-6
b. 6+5
c. 3+5
d. none of the above
"d" the order does not matter
400
Graph the following function. Using the trace function, find the minimum y value.
-10.3
500
How much did Samantha get paid for each magazine she sold if she was paid $50 up front, sold 1400 magazines and was paid a total $400?
$0.25
500
Find the sinusoidal regression for the following set of data rounded to the nearest tenth:
0-200
1-350
2-525
3-625
4- 675
5- 540
6- 325
7- 225
8- 75
9- 175
10- 235
276.8sin(.7x-.7)+379.2
500
Solve:
(3x+4-5x)/2=8x-16
-2x+4=16x-32
36=18x
x=2
500
With the problem 15-4*2(30-6*2)^2, what would you do first?
a. (30-6*2)
b. 2^2
c. 15-4
d. 30-6
a. (30-6*2)
500
Open a spreadsheet. Label the A column. Enter the following numbers. Using "One-Variable Statistics" under the "Statistics" Tab, find the first quartile labeled Q1X.
33,37,76,45,87,46,47,39,63,59