Derivatives
Integrals
Limits/Asymptotes
FUN Chart
Random
100

f(x) = 4x3+2x2+x+5

find f'(x)

f'(x)= 12x2+4x+1

100

Integrate the following: 

∫(6x2-4x+5) dx

f(x) = 2x3-2x2+5x+c

100

Refer to the graph on board:

What is the value of f(5)

f(5) = 2

100

If f(x) is increasing is f'(x) positive or negative

Positive

100

Find f(x) of the following: 

                         2(x+ h)5 - 5(x+h)- 2x+ 5x3

  lim h --> 0                 _________________________________

                                                          h

f(x)= 2x- 5x3

200

Find the derivative using the product rule in simplest form.

f(x)= (x2-1)(x+5)

f'(x) = 3x+10x -1

200

Integrate the following:

∫e 5x dx

e5x/5 + c

200

Refer to the graph on board:

At what letter(s) is there a removable discontinuity?

A,C

200

If f(x) is concave down, is f''(x) positive or negative?

Negative 

200

Find the equation of the tangent line to f(x)= 3x2-x   at x=1

y - 2= 5 (x-1)

or y= 5x -3 

300

What is the acceleration of the following function, at t=2.

x(t)= 3t3+4t2 -2t + 16

44

300

If f'(x) = 20x3 + 2, find f(x) if the point (1,2) is on the curve

f(x)= 5x4+2x-5

300

Refer to the graph on the board:

At what letter(s) is there a jump discontinuity?


B

300

If f(x) has a turning point at x = 6, what is the value of f'(6)?

f'(6) = 0

300

Find f'''(x) in simplest form.

f(x)= 2/3x4+1/6x6-5/6x3


f'''(x)= 16x + 20x- 5

400

Find the derivative of the following:

f(x)= (x+2)/(3x+1)

f'(x) = -5/(3x+1)2

400

Integrate the following (hint: natural log):

∫ x2/ (1 + x3) dx

1/3 ln l1 + x3l + c 

400

What is the horizontal asymptote of the function.

f(x)= 4x - 1 / 3 - 2x

y = -2

400

If f''(2) is crossing the x-axis what is f(2)?

A. Horizontal Asymptote

B. Vertical Asymptote

C. Inflection Point

D. None of the Above

C. An inflection point

400

Find the value for the constant "k" that will make the function continuous.             

             

                   x2, x<2

 f(x) =         k - x, x ≥ 2

k = 6

500

Find the derivative using implicit differentiation:

e2y=3x

dy/dx = 3/2e2y

500

Integrate the following using u substitution:

∫sinx cos x dx 

1/3 sin3x + c

500

Find the limit:

                                3x5 - 2x3+ 21

lim x  --> ∞    ____________________

                               6x3 + 2x + 1

∞  

500

The graph of y = 3x5 - 10x4 has an inflection point at 

(2, -64) 

500

A particle moves along the x - axis with velocity given by v(t) = 3t2 + 8t for time t≥o if the particle is at x = -3, at time t=2, find the position at t= 1. 

x(1) = -22