Find the derivative of f(x)= -x+tan(x)
f'(x)= -1+sec2(x)
Integrate: dx/√1 − 4x2
1/2 arcsin(2x) + C
∫1/(√x2-25) dx
ln|x+(√x2-25)| + C
∫x/(√x2+1) dx
(√x2+1) + C
y = (x4+2)2 What is dy/dx?
2(4x3+2)
Find the derivative of f(x)=sin(x)cos(x)
f'(x)=cos2(x)-sin2(x)
Integrate: 12/(1+9x2) dx
4arctan(3x) + C
∫x/(√x2-25) dx
(√x2-25) + C
∫arcsin(x) dx
xarcsin(x) + (√1-x2) + C
Where is the graph of f(x) = xe2x concave up?
x>-1
Find the derivative of f(x)= 2xsin(x) + x2cos(x)
f'(x) = 4xcos(x) + 2sin(x) - x2sin(x)
Integrate: t/(√1 − t4) dt
1/2arcsint2 + C
∫x6/(√1-x14) dx
1/7 sin-1(x7) + C
∫x/(√16-x2) dx
-(√16-x2) + C
f(x) = ln(e-4x + 5x + 4) Find f'(0)
1/5
Find the derivative of f(x)= 5xsec(x) + xtan(x)
f'(x) = 5sec(x)+5xsec(x)tan(x) + tan(x) + xsec2(x)
Integrate 3/(2(√y)(1 + y)) dy
3arctan(tan(x)/5) + C
∫ 1/x2(√x2+4) dx
-(√x2+4)/4x + C
∫ (√4-x2)/x dx
2ln|2/x - (√4-x2)/x| + (√4-x2) + C
The derivative of function g is given by g'(x)= 4/x2 - x. When is g increasing?
(-infinity, 41/3)
Find the dy/dx: sin(x) + 2cos(2y) = 1
dy/dx = cos(x)/4sin(2y)
Integrate (x-3)/(x2+1) dx
1/2ln(x2+1) - 3arctan(x) + C
∫ x2/(1+9x2)5/2 dx
x3/3(1+9x2)3/2 + C
∫ x3/(√1-x2) dx
1/5(1-x2)5/2 - 1/3(1-x2)3/2 + C
Function f is defined by the equation f(x) = x3 - 2x. If g(x) = f-1(x) and g(4)=2, what is g'(4)?
1/10