Terminology
Simplifying Expressions
Adding/Subtracting Polynomials
Multiplying/Dividing Monomials
Multiplying/Dividing Polynomials
100

-5x + 1

is classified as this type of polynomial

Binomial

100

4m-4+m+7

5m+3

100

(6y-4)+(2y+2)

8y-2

100

6a*9a^2

54a^3

100

5(4m-2)

20m-10

200

7x^2y^3

is a polynomial of this degree.

5

200

a+3+2a+2+2a

5a+5

200

(-3x^2+7x)+(-x^2-6)

-4x^2+7x-6

200

6xy(-8x^2y)

-48x^3y^2

200

-3x(5x^2+4x-5)

-15x^3-12x^2+15x

300

3x^4-5x^2+8x+1

is the opposite of this polynomial

-3x^4+5x^2-8x-1

300

-x^2+5-8x+4x^2+x-4

3x^2-7x+1

300

(3r-5)-(5r+2)

-2r-7

300

(10a^2b^6)/(5ab)

2ab^5

300

(14m^2+8m)/(-2m)

-7m-4

400

-4x^2+11x-2

is classified as this type of polynomial

Trinomial

400

-5d^2+3d-2+6d^2-8d+7

d^2-5d+5

400

(6a^2+2a-5)-(4a^2+5a+7)

2a^2-3a-12

400

(-18x^3y^2)/(3xy^2)

-6x^2

400

(12c^2-15bc+18c)/(3c)

4c-5b+6

500

4x^3-2x^2+10x^2-1

is first simplified. This is the coefficient of the term with degree 2.

8

500

2x^2-xy+11y-4+7yx-5x^2-9y

-3x^2+6xy+2y-4

500

(6x^2+5x-7)+(3x^2-7x+8)-(3x^2-6x)

6x^2+4x+1

500

((3a^2b^3)(-4ab^2))/(-6a^2b^5)

2a

500

The area of a triangle is represented by the expression 6x3 - 12x2 + 3x. This is the height of the triangle if its base is 3x.


4x2 - 8+ 2