find the vertex and axis of symmetry of h(x)=(x+4)^2+0
vertex:(-4,0)
axis of symmetry:x=-4
What is the quadratic functions y=6x^2-1
Vertex=(0,-1)
min value:-1
domain: all real numbers
range: y≥1
dec x < 0 and inc x > 0
y=2(x-h)2
(y=(x-1)^2-16)
c 0,1, 1, 2, 3
s 0,1,180,720, 1620
360
360 = 18000 pounds
y=f(x-1)
horizon translation 1 unit right
find the vertex and axis of symmetry of y=(x-7)^2-1
vertex:(7,-1)
axis of symmetry:x=7
What is the quadratic functions y=-x^2-4x-2
Vertex=(-2,2)
max value:2
range:≤ 2
inc: x <0 and dec x >-2
domain= all real numbers
y=2(x-p)(x-q)
(y=1(x-3)(x-8))
x 0, 0.2, 0.4 , 0.6
y 5, 7.16, 8.04, 7.64
1st diff -2.16, 0.88, -0.4
2nd diff- -1.28, -1.28
g(x)=f(x)+1
vertical translation 1 unit up
find the vertex and axis of symmetry of g(x)=2(x+1)^2-3
vertex:(-1,-3)
axis of symmetry:=-1
What is the quadratic functions g(x)=3x^2+18x-5
vertex= (-3,-32)
min value= -32
d= all real numbers
r= y ≥ -32
inc: x >-3 Dec: x < -3
y=a(x-h)^2tk
(y=(x-1)^2-16)
x 1, 4, 6, 10, 12, 15, 20, 24, 25
y 1.5, 2.2, 2.4, 3.9, 5.5, 6.8, 12.3, 16.4, 12.6
1st diff, 0.7, 0.2, 1.5, 1.6, 1.3, 5.5, 4.1, 1.2
2nd diff, -.05, 1.3, 0.1, -0.3, 4.2, -1.4, -2.9
3rd diff, 1.8, -1.2, -0.4, 4.5, -5.6, -1.5
g(x)=f(-x)-1
vertical translation 1 unit down
find the vertex and axis of symmetry of y=(x+4)-2
vertex=(-4,-2)
axis of symmetry=-4
What is the quadratic functions h(x)=x^2- 4x
vertex=(2,-4)
min value= 4
D= all real numbers
r= y ≥ -4
inc: x > -3 dec: x < -3
y=a(x-h)^2tk
(y=1(x-2)^2-6)
x 0, 0.25, 0.25, 0.75, 1, 1.1
y 22, 22.5, 17.5, 12, 9.24
1st diff, 0.5, -5, -5.5, -2.76
2nd diff, -5.5, -0.5, 2.74
g(x)=1/2 f(x+4)
horizon translation 4 units left
vertical shrink by 1/2
find the vertex and axis of symmetry of f(x)=6x^2-5
vertex=(0,-5)
axis of symmetry:x=0
What is the quadratic functions g(x)= -3x^2 -6x +5
Vertex: (-1,8)
max value =8
D= all real numbers
r= y ≤8
inc: x ≤ -1 Dec: x > -1
y=a(x-p)(x-9)
(y=1/2(x-6)(x-8)
x 0, 1 , 2, 3
y 0, 45, 90, 135
1st diff, 45, 45, 45
g(x)=f(x)+1
vertical translation 1 unit up