(x^2 + 4x)/5x
(x+4)/5
x^2 + 5x + 6
(x+2) (x+3)
y=2x+5
yes
(2x-3)(x^2+4)
2x^3-3x^2+8x-12
((x^2 - 9)/2x) / ((x+3)/5)
5(x-3) / 2x
3x^2 - 8x -3
(3x+1)(x-3)
x^2+y^2=25
no (circle fails vertical line test; a single x gives 2 different y values)
9x^2-16
(3x-4)(3x+4)
((x^2+5x+6)/2x^2) / ((x^2)-9)/4x
((2(x+2)/x(x-3))
4x^2 - 12x +9
(2x-3)^2
*a^2 - 2ab + b^2 = (a-b)^2
4x^2 = (2x)^2
9 = 3^2
y = |x|
yes, for every x, only 1 output
x^1/7 (imagine it in root form) = y + 9
function or not?
yes
*x^1/7 means the 7th root of x. 7 is odd, and odd roots are-single valued, thus it is a function.
x^2+3x+2/2x^2+4x / x^2-1/x^2+2x+1
(x+1)^2 / 2x(x-1)
x^3 + 3x^2 + 2x + 6
(x^2+2) / (x+3)
y^2 = x
no, sideways parabola fails vertical line test
x^3-8/x^2+2x / x^2-4/x
x^2+2x+4 / (x+2)^2
(x^4-16/x^2-4) / (x^2-2x/x)
x^2+4 / x-2
2x^3 + 4x^2 + 3x + 6
(x+2)(2x^2+3)
{(1,2),(2,3),(3,4),(4,5)}
&
{(1,2),(1,3),(2,4),(3,5)}
yes, each input (x) has exactly 1 output (y)
no, the x value of 1 maps to 2 outputs (2&3)
*think of it as there cannot be any "<" signs from the x values
x^2+3x+2/2x^2+4x / x^2-1/x^2+2x+1
(x+1)^2 / 2x(x-1)