Basic Derivatives
Define the Product Rule using f(x)g(x)
f′(x)g(x)+ g′(x)f(x)
Define the Chain Rule for f(g(x))
g′(x)f′(g(x))
Define the Quotient Rule using f(x)/g(x)
[g(x)f′(x) - f(x)g′(x)]/ (g(x))²
d/dx sin(2x)cos(2x)
-2sin2(2x)+2cos2(2x)
Differentiate y= 2/(x+1)
y′ = -2/ (x+1)²
Differentiate f(x) = [(3x-1)/(x2+3)]
*Leave numerator in factored form
2(3x-1)(-3x2+2x+9)] / (x2+3)3
Find the derivative of y = (5x - 2)/(x2 + 1)
(-5x2 + 4x + 5)/(x2 + 1)2
f(x) = sin3 4x Find f'(x)
12sin2 4x cos 4x
f(x)=x²sinx, what is f′(x)?
2xsinx+ x²cosx
Differentiate y=x²sin³(5x)
y′ =xsin²(5x)[15xcos(5x)+2sin(5x)]