Basic Derivatives
Product and Quotient Rule
Chain Rule
Trigonometric Derivatives
Logarithmic and Exponential Derivatives
100

y = 3x2

y' = 6x

100

y = 3x2 sin(x)

y' = 3x2 cos(x) + 6x sin(x)

100

y = (3x - 9)4

y' = 12(3x - 9)3

100

f(x) = sec x

f'(x) = sec x tan x

100

Find the 2nd derivative of     y = ex

y'' = ex

200

f(x) = 5

f'(x) = 0

200
f(x) = (3x - 2x2)(5 + 4x)
-24x2 + 4x + 15
200

f(x) = sin(4x)

f'(x) = 4 cos(4x)

200

y = 3csc(2x)

y' = -6csc(2x) cot(2x)

200
f(x) = ln(x2)
2/x
300

f(x) = 6x3 + x - 2

f'(x) = 18x2 + 1

300

y = (5x - 2)/(x2 + 1)

y' = (-5x2 + 4x + 5)/(x2 + 1)2

300
Find y' if y = (9x2 + 4)1/3
(6x)/(9x2 + 4)2/3
300

f(z) = sin x tan x

f'(z) = cos x tan x + sin x sec2x

300
f(x) = 3x2
f'(x) = 2x ln3 3x2
400

f(x) = 3sin(x) - 2cos(x)

3cos(x) + 2sin(x)

400

h(x) = (2x + 5) / x1/2

h'(x) = (2x - 5)/(2x3/2)

400

f(x) = sin3(4x)

f'(x) = 12sin2(4x) cos(4x)

400

y = cos2(x)

y' = -2cos(x) sin(x)

400

f(x) = ln (x/(x2 + 1))

f'(x) = (1/x) - (2x/(x+ 1))

500

s(t) = 13t+ 3t - 6t +3

s'(t) = 52t+ 6t - 6

500

Blue(x) = 3x sin(3x)

Blue'(x) = 3sin(3x) + 9x cos(3x)

500

W(x) = sin2(3x)

W'(x) = 6sin(3x) cos(3x)

500

y = sin5(8x2)

y' = 5sin4(8x2) cos(8x2) 16x

500

y = ln(5x2+1)7

70x/(5x2+1)