Derivatives
Limits
Chain Rules
Related Rates
Mean Value
Theorem
100

y=5x3-6x-3

d3y/dx3=30+360/x6

100

            lim     (2x+5)

x->3

11

100

y=(3x+2)5

dy/dx=15(3x+2)4

100

A circle's radius is increasing at a rate of 3 cm/s. How fast is the area of the circle increasing when the radius is 10cm?

dA/dt= 60π cm2/s

100

f(x)=x2              [1,3]

x=2

200

y=(3x2)(x3+4)

dy/dx=15x4+24x

200

                  lim     x2-4/x-2

x->2

4

200

y=(2x3+x)4

dy/dx=4(2x3+x)3(6x2+1)

200

Water leaking onto a floor forms a circular pool. The radius of the pool increases at a rate of 4cm/min. How fast is the area of the pool increasing when the radius is 5cm?

da/dt=40π

200

f(x)=x3-x2-2x      [-1,1]

x=-1/3 , 1

300

y=5x5-3x2+9/x

dy/dx=24x3-3-9x-2

300

                    lim    (1+x)2−1−2x/x2

x→0  

1

300

y=(x2-4x)7

dy/dx=7(x2-4x)6(2x-4)

300

Oil spilling from a ruptured tanker spreads in a circle on the surface of the ocean. The area of the spill increases at a rate of 9π m2/min. How fast is the radius of the spill increasing when the radius is 10m?

9m/20min = dr/dt

300

f(x)=x2/(2)-2x-1        [-1,1]

x=0

400

y=4x5/2-7x3/2

dy/dx=10x3/2-21/2x1/2
400

                      lim     5x2-3x+1/2x2+7

x->∞

5/2

400

y=(x2+1)-3

dy/dx=-6(x2+1)-4

400

Air is pumping into a spherical ballon at 8cm3/s. How fast is the radius increasing when the radius is 5cm?

dr/dt = 2/25π cm/s

400

f(x)=x3-3x       [-2,2]

x=-1,1

500

y=3x7-5x5+4x-2-7x-4

d5y/dx5= 7560x2-600-2880/x7+20160/x9

500
              lim |x-2|/x-2

x->2-

-1

500

y=(4x3-5x2+2)6

dy/dx=6(4x3-5x2+2)5(12x2-10x)

500

Water is flowing into a cone at 12 cm3/s. The cone has a height of 10cm and a radius of 5cm. How fast is the water level rising when the water is 4cm deep?

dh/dt = 3/π cm/s

500

f(x)=x3+x           [-1,2]

x=-√(2/3), √(2/3)