Indefinite Integrals
Definite Integrals
Volumes
Work
Average Value of a Function
500

Find the general indefinite integral. (Use C for the constant of integration.)

int(4x^3 + 8x + 7)dx

x^4+4x^2+7x+C

500

Evaluate the integral.

int_0^1(x^2+2x-3)dx

-5/3

500

Volume of a rectangular box

V=lwh

500

Formula relating work, force and distance.

W=Fd

500

Find the average value of the function

f(x)=1+x^2

on the interval [-1,2]

2

1000

Find the general indefinite integral. (Use C for the constant of integration.)

int(x^1.4+9x^3.5)dx

5/12x^2.4+2x^4.5+C

1000

Evaluate the integral.

int_1^3(x^2+2x-3)dx

32/3

1000

Volume of a circular cylinder

V=pir^2h

1000

The amount of work done in lifting a 20-lb weight 6 feet off the ground.

120 ft-lb

1000

Find the average value of the function

f(x)=sqrtx

on the interval [0,9]

2

1500

Find the general indefinite integral. (Use C for the constant of integration.)

int(12x^3+cos(x))dx

3x^4+sin(x)+C

1500

Evaluate the integral.

int_1^4 sqrt x \ dx

14/3

1500

Volume of a sphere

V=4/3pir^3

1500

The amount of work done in hoisting a 1,500-lb grand piano from the ground to the fifth floor, 70 feet above the ground.

105,000 ft-lb

1500

Find the average value of the function

f(x)=4 cos(x)

on the interval 

[-pi/2,pi/2]

8/pi

2000

Find the general indefinite integral. (Use C for the constant of integration.)

int(sec(x)tan(x)+10x^4+csc^2(x))dx

sec(x)+2x^5-cot(x)+C

2000

Evaluate the integral.

int_4^9 sqrt x \ dx

38/3

2000

Volume of a cone

V=1/3pir^2h

2000

The amount of work done in lifting a 1.2-kg book off the floor to put it on a desk that is 0.5 m high.

W=Fd=(11.76N)(0.5m)=5.88 J

2000

Find the average value of the function

f(x)=1/x^2

on the interval [1,5]

1/5

2500

FREE POINTS

FREE POINTS

2500

Evaluate the integral.

int_0^1 (x+3)(x-4) \ dx

-73/6

2500

The volume of a cone is what fraction of the volume of a circular cylinder

One third

2500

The amount of work done in lifting 125 kg from 1.0 m to 2.5 m above the ground.

W=Fd=(1225N)(1.5m)=1837.5 J

2500

Find the average value of the function

f(x)=e^(1/x) / x^2

on the interval [2,9]

1/7(e^(1/2) - e^(1/9))