d/dx(64sin(x⁴))
256x3cos(x⁴)
d/dx(16x²)(3x⁵)
336x6
17th century
d/dx(3(6xex)2
216x(x+1)e2x
d/dx(x⁴+5x)10
10(x⁴+5x)⁹(4x³+5)
d/dx((9x+4x²)(34x⁵-3))
(9+8x)(34x5-3)+170x4(9x+4x2)
OR
952x6+1836x5-24x-27
What is the broadest definition of Calculus?
a) The study of operations and applications
b) The study of change
c) The study of shape
d) the study of collections of data
B) The study of change
d/dx((x2+1)7(9x4))
126x5(x2+1)6+36x3(x2+1)7
or
18x3(x2+16)(9x2+2)
d/dx(sin√(1+cosx))
-(sin(x)cos(√1+cos(x)))/(2√1+cos(x))
d/dx(1+x3/2)(x-3-2x1/3)
-(22x11/2+4x4+9x13/6+18x2/3)/6x14/3
Who are the two people credited with inventing calculus?
Isaac Newton and Gottfried Leibniz.
d/dx((1+4x)3(12x2-1))
12(1+4x)2(12x2-1)+24x(1+4x)3
d/dx(1+x⁵cotx)⁻⁸
(8x4(xcsc2x-5cotx))/(x5cotx+1)9
or
-8(5x4cotx-x5csc2x)/(x5cotx+1)9
d/dx(sin(x)+cos(x))(3x3+3)
9x2(sin(x)+cos(x))+(3x3+3)(cos(x)-sin(x))
What's the difference between using (y2-y1)/(x2-x1) and using derivatives?
You can use (y2-y1)/(x2-x1) when finding the slope of a secant line and a derivative when finding the slope of the tangent line at a specific point.
d/dx((x2+1)7(9x4))
18x3(x2+1)6(9x2+2)
or
36x3(x2+1)7+126x5(x2+1)6
d/dx(cot(14x⁸+9x³))
-(112x7+27x2)csc2(14x8+9x3)
d/dx(cot(x)+sin(x)+4x⁵+14x³)(tan(x)+8x+4x²)
(-csc2(x)+cos(x)+20x4+42x2)(tan(x)+8x+4x2)+(sec2(x)+8+8x)(cot(x)+sin(x)+4x5+14x3)
What is needed for a limit to exist? (include three parts)
1. F(x) must exist at that point
2. The limit from the left and the right must exist and be the same
3. F(x) must equal the limit at that point
d/dx(sin(x)+4x2)(cos(x)+3)5
(cos(x)+8x)(cos(x)+3)5-5sin(x)(cos(x)+3)4(sin(x)+4x2)