Evaluate
Derivatives
Trig
Eq of Tangent Lines
100

g(x) = 6x2 + 2x + 4

g'(3) = ?

g'(3) = 38

100

h(x) = 3x4 - cos(x)


h'(x) = 12x3 + sin(x)

100

Another way to write sec2(x)

(sec(x))2 

1/cos2(x)

1/(cos(x))

100

Equation of a tangent line at        (1, -8) 

f(x) = 7x2 - 15x

y = -x - 7

200

f(x) = sec(x) + cos(x)

f'(pi) = ?

f'(pi) = 0

200

f(x) = x1/2 * 2tan(x)

f'(x) = x -1/2 * tan(x) + 2x1/2 * sec2(x)

200

When looking at a given angle, what is opposite/adjacent?

tan(x) 

sin(x)/cos(x)

200

Equation of a tangent line at x = 4

g(x) = 4x - 6x3 - 2x - (3/2)x2 + 6x3 - 2x 

y = -12x + 24

300

h(x) = 2e2x - 3x

h'(2) = ?  

h'(2) = 208.51

300

f(x) = 2x3 / sin(x)

f'(x) = (6x* sin(x) - 2x3 * cos(x)) / sin2(x)

300

If one leg of a triangle is 5 and the other is 12, what is the length of the hypotenuse?

13

300

Equation of a tangent line at      y = 0

y = (x2 - 4)/(x - 2) + 2

y = 1

400

g(x) = e^(4x - 5)3x

g'(4) = ?

g'(4) = 1.72

400

h(x) = e^(2x1/2 + cos(x))

h'(x) = e^(2x1/2 + cos(x)) * (x-1/2 - sin(x))

400

If one angle of a triangle is 72 and the adjacent side length is 5, what is the length of the opposite side?

15.39

400

Equation of a tangent line at          x = pi/4

f(x) = cos(4x) + sin(2x) + tan(x)

y = 2x + 1 - pi/2

y = 2x - 0.57

500

f(x) = cos(sin(x))

f'(pi/3) = ?

f'(pi/3) = -0.38

500

g(x) = tan3(x2 + 5x)

g'(x) = 3tan2(x2+5x)sec2(x2+5x)(2x+5)

500

If one angle of a triangle is pi/6 and the adjacent side length is 10, what is the length of the hypotenuse?

11.55

500

Equation of a tangent line at the point (0, y)

f(x)  = (4x + 16)1/2 + (4x + 2)2 

y = 33/2x + 8

y = 16.5x + 8