Basic Chain Rule
Surprise
Product Rule
Quotient Rule
Chain Rule
100

The derivative of 4(cos x)2

-8sinx

100

Average ROC for f(x) = 2x2 - 4 over the interval [2, 5]

(show set up)

Aver ROC = [f(5) - f(2)]/(5 - 2) = (46 - 4)/3 = 14

100

The derivative of x(sin x)

(1)(sin x) + (x)(cos x)

100

The derivative of (cos x)/(sin x)

[(sin x)(sin x) - (cos x)(-cos x)]/(sin x)2

100

The derivative of 3{(x + 1)- 4/(x3 - 2x)}

3{2(x + 1)(1) + [4/(x3 - 2x)2][3x2 - 2]}

200

The derivative of (2x2 + 3x - 2)2

(2x2 + 3x - 2)(4x + 3)

200

Average ROC for f(x) = 3x3+4 over the interval [-1, 2]

(show set up)

Aver ROC = [f(2)-f(-1)]/(2+1) = [28-1]/3 = 9

200

The derivative of x²cosx

(2x)(cos x)+ (x²)(-sin x)

200

The derivative of 2/(x+1)

-2/(x+1)²

200

The derivative of tan(sinx)

[sec²(sin x)][cos x]

300

The derivative of ln(x2 - x)

[1/(x2 - x)][2x - 1]

300

Instantaneous ROC for f(x) = (3x2 + 1)2 @ x = 2

f'(x) = 2(3x2 + 1)(6x)

f'(4) = 2[(3)(4) + 1][(6)(2)] = 312

300

The derivative of y = x³lnx

y′ = (3x²)(ln x)+(x3)(1/x)

300

The derivative of (1+lnx)/(x²-lnx)

[(1/x)(x2-lnx) - (1+lnx)(2x-1/x)] / (x²-lnx)²

300

The derivative of ln[(sin x)/x]

[x/(sin x)]{[(cos x)(x) - (sin x)(1)]/x2}

400

The derivative of 5(tan x)3

15(tan x)2(sec x)2

400

Instantaneous ROC for f(x) = 1/(x3 - 2x) @ x = 3

f(x) = (x3 - 2x)-1

f'(x) = [(-1)(x3 - 2x)-2][3x2 - 2]

f'(3) = (-25)/(21)2 = -25/441

400

The derivative of x3/2(ex)

(3/2 x1/2)(ex) + (x3/2)(ex)

400

The derivative of ex/(tan x)

[(ex)(tan x) - (ex)(sec2x)]/(tan2x)

400

The derivative of [10x][e(2x - lnx)]

[10][e(2x - lnx)] + [10x][e(2x - lnx) (2 - 1/x)]

500

The derivative of e(x^2 - 3x + x^3)

e(x^2 - 3x + x^3)(2x-3+3x2)

500

Instantaneous ROC for f(x) = exlnx @ x =1

f'(1) = (e1)(ln(1)) + (e1)(1/(1)) = e

500

The derivative of (x2 - 3)(5x - x3 + sin x)

(2x)(5x - x3 + sin x) + (x2 - 3)(5 - 3x2 + cos x)

500

The derivative of (x³lnx)/(x+2)

{[(3x2)(ln x) + (x3)(1/x)](x+2)-(x3lnx)(1)}/(x+2)²

500

The derivative of ln[tan2x]

[tan2x]-1[2(tan x)(sec2x)]