Basic Derivative Information and Power Rule
Chain Rule
Product Rule
Quotient Rule
Trig Derivatives
100

The derivative calculates the ________.

Slope of the tangent line

100

Define the Chain Rule for f(g(x))

f′(g(x))*g′(x)

100
Define the Product Rule using f(x)g(x)
f′(x)g(x)+ g′(x)f(x)
100

Define the Quotient Rule using f(x)/g(x)

[f′(x)g(x) - f(x)g′(x)]/ [g(x)]²

100

d/dx (cosx)=

-sinx

200

d/dx (5) =

0

200

d/dx [(3x+1)²]

6(3x+1)

200

f(x)=x²sinx, what is f′(x)?

2xsinx + x²cosx

200

Differentiate (no negative exponents): y= 2/(x+1)

y′ = -2/(x+1)²

200

Differentiate y=tan(2x)

y′=2sec²(2x)

300

d/dx (x²) =

2x

300

d/dx [sin(4x²)]

8xcos(4x²)

300

Differentiate and factor: y=x³lnx 

y′ =x²(1+3lnx)

300

Differentiate & simplify numerator: y= (1+lnx)/(x²-lnx)

y′= (1/x-x-2xlnx)/(x²-lnx)²

300

Differentiate y=csc(x2)

y′ =-2xcsc(x2)cot(x2)

400

d/dx (3x²-x+3) =

6x-1

400

Differentiate y=(13x²-5x+8)1/2

y′ =1/2(26x-5)(13x²-5x+8)-1/2

400

Differentiate and factor: y=e-x²cos2x 

y′ =−2e^(−x²) [xcos2x+sin2x]

400

Find f′(x) and factor: f(x)= (x²-1)³/(x²+1)

f′(x)= [4x(x²-1)²(x²+2)]/[(x²+1)²]

400

d/dx [sin(ex)]

excos(ex)

500

d/dx (15x1/3-12x3/4)

5x-2/3 - 9x-1/4

500

Differentiate y=3tan(√x)

y′ =3sec²(√x)/(2√x)

500

Differentiate and factor: y=x²sin³(5x)

y′ =xsin²(5x)*[15xcos(5x)+2sin(5x)]

500

Differentiate y= (x³lnx)/(x+2)

y'=[(3x2lnx+x2)(x+2)-x3lnx]/(x+2)2

y′ = [x²(2xlnx+6lnx+x+2)]/(x+2)²

500

d/dx [cos4x/(1-sin2x)]=

-2cosxsinx