The derivative calculates the ________.
Slope of the tangent line
Define the Chain Rule for f(g(x))
f′(g(x))*g′(x)
Define the Quotient Rule using f(x)/g(x)
[f′(x)g(x) - f(x)g′(x)]/ [g(x)]²
d/dx (cosx)=
-sinx
d/dx (5) =
0
d/dx [(3x+1)²]
6(3x+1)
f(x)=x²sinx, what is f′(x)?
2xsinx + x²cosx
Differentiate (no negative exponents): y= 2/(x+1)
y′ = -2/(x+1)²
Differentiate y=tan(2x)
y′=2sec²(2x)
d/dx (x²) =
2x
d/dx [sin(4x²)]
8xcos(4x²)
Differentiate and factor: y=x³lnx
y′ =x²(1+3lnx)
Differentiate & simplify numerator: y= (1+lnx)/(x²-lnx)
y′= (1/x-x-2xlnx)/(x²-lnx)²
Differentiate y=csc(x2)
y′ =-2xcsc(x2)cot(x2)
d/dx (3x²-x+3) =
6x-1
Differentiate y=(13x²-5x+8)1/2
y′ =1/2(26x-5)(13x²-5x+8)-1/2
Differentiate and factor: y=e-x²cos2x
y′ =−2e^(−x²) [xcos2x+sin2x]
Find f′(x) and factor: f(x)= (x²-1)³/(x²+1)
f′(x)= [4x(x²-1)²(x²+2)]/[(x²+1)²]
d/dx [sin(ex)]
excos(ex)
d/dx (15x1/3-12x3/4)
5x-2/3 - 9x-1/4
Differentiate y=3tan(√x)
y′ =3sec²(√x)/(2√x)
Differentiate and factor: y=x²sin³(5x)
y′ =xsin²(5x)*[15xcos(5x)+2sin(5x)]
Differentiate y= (x³lnx)/(x+2)
y'=[(3x2lnx+x2)(x+2)-x3lnx]/(x+2)2
y′ = [x²(2xlnx+6lnx+x+2)]/(x+2)²
d/dx [cos4x/(1-sin2x)]=
-2cosxsinx