Segment Bisectors
Midpoint and Distance Formula
Perimeter and Area
Identifying Angles
Angle Postulates and Theorems
100

1) Identify the Segment Bisector of Segment RS. 

2) Find RS and MS. 

1) Segment Bisector is Line s

2) MS = 15 and RS = 30

100

Given a segment AB on the coordinate plane with endpoints A(2, 4) and B(12, 14). Find the coordinates of the midpoint M. 

Midpoint: M(7, 9)

100

Classify the polygon by the number of sides and tell whether it is convex or concave. 

3. Concave Quadrilateral

4. Convex Triangle

5. Convex Pentagon

6. Concave Hexagon

100

Write four names for the Angle below: 

100

1) Write the Angle Addition Postulate statement for the diagram below. 

2) Find m<ABC. 

1. m<ABD + m<DBC = m<ABC

2. m<ABC = 103 degrees

200

1) Identify the segment bisector of Segment RS. 

2) Find RM and MS. 

1) Segment Bisector is Ray MA. 2) RM = 13 and MS = 13

200

Given a segment AB on the coordinate plane with endpoints A(3, -5) and B(7, 9). Find the coordinates of the midpoint M. 

Midpoint: M(5, 2)

200

Find the Area and Perimeter of this figure in the coordinate plane. 

Area = l x w = 10 X 11 = 110

Perimeter = l + l + w + w = 10 + 10 + 11 + 11 = 42

200

Identify 3 pairs of congruent angles in the diagram below: 


1. <C = <F

2. <A = <D

3. <B = <E

200

Find the m<CBD and m<CBA given that <CBA is being bisected by the Ray BD. 

m<CBD = 65

m<CBA = 130

300

1) Identify the segment bisector of Segment JK. 

2) Find the value of x and JM. 

1) Point M

2) x = 22 and JM = 138

300

Find the distance between the two points: A(13, 2) and B(7, 10)

Distance = 10

300

Find the area of the triangle below: 

Area = bh/2 = (12 x 10)/2 = 60



300

Find the measure of each angle and then classify each angle. 

a. <RQU = 125  (obtuse)

b. <TQU = 35 (acute)

c. <UQS = 90 (right)

300

DAILY DOUBLE!!!!!!! WORTH 600 POINTS

Find the measure of each angle in the diagram: 

1. m<ABD , 2. m<DBC, 3. m<ABC

x = 25

m<ABD = 135

m<DBC = 45

m<ABC = 180

400

1) Identify the segment bisector of Segment JK. 

2) Find the value of k and MK. 

1) Line l

2) k = 2 and MK = 39

400

Given a segment AB on the coordinate plane with endpoints A(-8, -6) and B(-4, 10). Find the coordinates of the midpoint M. 

Midpoint: M(-6, 2)

400

Find the perimeter of the figure below: 

Perimeter = AC + CB + AB = 10 + 12 + 15.6 = 37.6

AB =  sqrt((5--7)^2+(-4-6)^2) 

AB =  sqrt((12)^2+(-10)^2)

AB =  sqrt(144+100)

AB =  sqrt(244)

AB = 15.6  


400

If m<A = 25 degrees and m<E = 97 degrees, find m<B and m<D. 

m<D = 25 degrees

m<B = 97 degrees

400

Given that m<ABC = 143, find m<ABD and m<DBC. 

m<ABD = 24

m<DBC = 119

x = 32

500

1) Identify the segment bisector of Segment XY. 

2) Find the value of x and XY. 

1) Ray MN 2) x = 5 and XY = 32

500

Find the distance between two points: J(-8, 0) and K(1, 4)

D=sqrt(97)=9.8

500

Find the area and the perimeter of the figure below: 

Area = bh/2 = (4 x 3)/2 = 6

Perimeter = AB +BC + AC = 3.6 + 3.6 + 4 = 11.2

AB =  sqrt((0-2)^2+(1-4)^2) 

AB = 3.6


BC =  sqrt((2-4)^2+(4-1)^2) 

BC = 3.6

500

Which angle name does not belong with the other three? Explain your reasoning. 

<BCA does not belong because, the other three names refer to the same angle. 

500

Ray BD bisects <ABC. Find m<ABD, m<CBD, and m<ABC. 

m<ABD = 67

m<DBC = 67

m<ABC = 134