Writing Equations in Slope-Intercept Form
Writing Equations in Point-Slope Form
Writing Equations in Standard Form
Writing Equations for Parallel and Perpendicular Lines
Analyzing and Describing
Scatter Plots
100

Write in slope-intercept form

(4,3) (0,-3)

y=(3/2)x-3


100

Write in point-slope form:

(1,-4), m=-2

y+4=-2(x-1)

100

Write an equation in standard form:

(1, 1) 

(2, -2)

3x + y = 4

100

Write an equation that is parallel to y=2x+3 and passes through the point (5, -4).

y=2x - 14

100

Describe the relationship of the data.

0

       0    0 00

             0    0

                  00   0   0 

                           0 0        0

                                      0

Negative linear correlation

200

Write in slope-intercept form

(-3,5) (3,-7)

y=-2x-1

200

Write in point-slope form:

(-8, 3), m=1/4

y-3=1/4(x+8)

200

Write an equation in standard form:

y + 1 = -1/4(x - 3)

1/4x + y = -1/4

or

x + 4y = -1

200

Write an equation of a line that is perpendicular to y=(1/2)x + 3 and passes through the point (-3, 1).

y= -2x - 5

200

SURPRISE!

You deposit $125 into an account that earns 4% simple interest. How much will be in the account after 3 years?

$140

300

Write a linear function.

f(0)=10, f(6)=34

f(x)=4x+10

300

Write in point-slope form:

(-2, -5), m=3

y+5=3(x+2)

300

Write an equation in standard form:

y - 2 = 1/3 (x - 3)

-1/3x + y = 1

or

-x + 3y = 3

300
Write the equation for a line that passes through the point (4, -3) and is perpendicular to y= 4x - 1.

y= (-1/4)x - 2

300

Interpret the strength and direction of the correlation.

Lemonade Stands

(x-axis: temperature outside, y-axis: # of lemonade stands)

                                                         x      x

                                       x       x          x

                                                 x 

                                      x     x

                     x         x              x

                           x        x

          x          x

If you were to draw a line of fit, the residuals would be relatively small, you can conclude that there is a strong, positive correlation.

So, as the temperature outside increases, the number of lemonade stands generally increases.