Exponents
Add/Subtract Polynomials
Polynomial Functions
Multiply Polynomials
Divide Polynomials
100
(6p7)2
36p14
100
-5y3 + 8y3 - y3
2y3
100
For f(x) = 4x3 - x2 + 5, find f(3).
104
100
(3x4)(5x3)
15x7
100
(15x2 - 12x + 3)/3
5x2 - 4x + 1
200
(3/7)-2
49/9
200
5x2y - 6xy2 + 9x2y + 13xy2
14x2y + 7xy2
200
For f(x) = 10x2 - 2x and g(x) = 2x, find (f + g)(2).
40
200
-2(8x3 - 9x2)
-16x3 + 18x2
200
(5m3 - 9m2 + 10m)/(5m2)
m - 9/5 + 2/m
300
(x-4y2)/(x2y-5)
y7/x6
300
(3a5 - 9a3 + 4a2) + (-8a5 + 8a3 + 2)
-5a5 - a3 + 4a2 + 2
300
For f(x) = x2 and g(x) = x + 3, find f(g(4)).
49
300
(5x2)(-4x2 + 3x - 2)
-20x4 + 15x3 - 10x2
300
(2x2 + x - 10)/(x - 2)
2x + 5
400
(3x2/y)2(4x3/y-2)-1
(9x)/(4y4)
400
(-6m2 - 8m + 5) - (-5m2 + 7m - 8)
-m2 - 15m + 13
400
For f(x) = 4x - 1 and g(x) = x2 + 5, find f(g(x)).
4x2 + 19
400
(3x - 4)(2x2 + x)
6x3 - 5x2 - 4x
400
(2p3 + 5p2 + p - 2)/(2p + 2)
p2 + 3p/2 - 1
500
[(-4m5n4)/(24mn-7)]-2
36/(m8n22)
500
5k - (5k - [2k - (4k - 8k)]) + 11k - (9k - 12k)
20k
500
For f(x) = 4x - 1 and g(x) = x2 + 5, find g(f(x)).
(4x - 1)2 + 5 = 16x2 - 8x + 6
500
(x - 2)3
x3 - 6x2 + 12x - 8
500
(3x3 - 2x + 5)/(x - 3)
3x2 + 9x + 25 + 80/(x - 3)