ln(x)
e^x
a^x
L'Hopital
etc.
100
1x 1/t dt
ln(x)
100
y= ex3. Find y'.
y' = 3x2ex3
100
y=7(4)x. Find y'.
y' = 7ln(4)4x
100
limx→∞(3x5+2)/(7x5-8)
3/7
100
y=log7(8x). Find y'.
y'=1/xln(7)
200
y= √ (3x3+5x). Find y'.
y'=(9x2+5)/(2(3x3+5x)1/2)
200
y=e-5x2cos(x). Find y'.
y'=-10xe-5x2cos(x)-e-5x2sin(x)
200
y=8x/ex. Find y'.
y'=(8x/ex)(ln8-1)
200
limx→0(e3x)/(x2)
∞ (not L'Hopital)
200
d/dx[∫4x sin√t dt]
sin(√x)
300
y= ln(x sin(x)). Find y'.
y' = 1/x +cot(x)
300
∫xe5x2dx
1/10e5x2+C
300
∫(12)3xdx
1/3ln(12)123x+C
300
limx→0(x2)/(cos(3x)-1)
-2/9
300
y=(10x)cos(x). Find y'.
[-ln(10x)sin(x)+cos(x)/x](10x)cos(x)
400
∫(tan√x)/(√x) dx
-2ln|cos√x|+C
400
∫(ex+4)2dx
1/2e2x+8ex+16x+C
400
∫(5x)/(7)x2dx
(-5/2ln(7))(7)x2+C
400
limx→∞(ex)/(e5x)
0
400
d/dx[∫-25x et2 dt]
5e25x2