Integration By "Party"
Definite Integrals Rock
A Substitute is Required
Fun With Trig
The South Polar
Parametric This
Keep Em Seperated
100
Evaluate:

int xln(x) dx

What is 

1/2 x^2ln(x)-1/4x^2+C

100

Evaluate 

int_1^2 (x + 2x^2)/x dx

What is 4
100

Evaluate 

int (4x^3) / sqrt(x^4 + 9) dx

What is 

2 sqrt(x^4 + 9) + C

100

Evaluate 

int sin(x)/root3(cos(x)) dx

What is 

-3/2 (cos(x))^(2/3) + C

100

a) Plot the point with polar coordinates (4,2pi/3). Then find its Caresian Coordinates. b) The Cartesian coordinates of a point are -3,3. Find two sets of polar coordinates for the point.

What is 

a)

(-2,2sqrt(3))

 b)

(3sqrt(2), (3pi)/4) 

(-3sqrt(2), (7pi)/4)

100

Consider the parametric equations:

x = t - 1, y = t^3

a) Eliminate the parameter to obtain an equation in terms of x and y. 

b) Sketch a graph of the curve.

What is

y = (x + 1)^3

100

The solution to the differential equation 

dy/dx = y^2 e^-x

What is 

y(x) = 1/(e^-x - C)

200
Evaluate:

int (x+2)e^(2x+1) dx

What is

1/2(x + 2)e^(2x + 1) - 1/4 e^(2x + 1) + C

200

Evaluate 

int_e^(e^2) 1/(x lnx) dx

What is ln(2)
200

Evaluate 

int tan(x) sec^4(x) dx

What is 

1/4 sec^4(x) + C or 1/4 tan^4(x) + 1/2 tan^2(x) + C

200

Evaluate 

int sin(x) cos(cos(x)) dx

What is 

-sin(cos(x)) + C

200

Sketch the polar curve

r = 1 + cos(2theta)

. You must label all three x-intercepts in polar coordinates.

200

Consider the parametric equations: 

x = 3cos(t), y = 3sin(t)

pi <= t <= 2pi

a) Eliminate the parameter to find an equation in terms of x and y. 

b) Sketch a graph of the curve and indicate the direction of movement.

What is 

x^2 + y^2 = 9,-3<=y<=0


200

The solution to the differential equation 

dy/dt = (3t^2)/y

What is 

y = +- sqrt(2t^3 + C)

300

Evaluate

int x^2 cos(x) dx

What is 

x^2 sin(x) + 2x cos(x) - 2sin(x) + C

300

Evaluate 

int_0^2 x e^xdx

What is 

e^2 + 1

300

Evaluate 

int 1/(xsqrt(lnx)) dx

What is 

2 sqrt(lnx) + C

300

Evaluate 

int tan^2(x)sec^4(x) dx

What is 

1/5 tan^5(x) + 1/3 tan^3(x) + C

300

Find the polar equation for the curve represented by x + y = 2.

What is 

r = 2/(cos(theta) + sin(theta))

300

Consider the parametric equations: .

x = cos(t), y = 8sin(t)

Find the equation of the tangent line to the curve at

t = pi/2

What is y = 8

300

The solution to the differential equation: 

y' = e^(y/2) sin(t)

What is 

y = -2 ln(1/2 cos(t) + C)

400

Evaluate 

int e^sqrt(x) dx

What is 

2e^sqrt(x) * sqrt(x) - 2 e^sqrt(x) + C

400

Evaluate 

int_(sin(pi/2))^lne cos(e^(x^2))dx

What is 0
400

Evaluate 

int x sqrt(x - 5) dx

What is 

2/5 (x - 5)^(5/2) + 10/3 (x - 5)^(3/2) + C

400

Evaluate 

int (1 + cos(x))/sin(x) dx

What is 

ln(csc(x) - cot(x)) + ln(sin(x)) + C

400

The area enclosed by the curve 

r^2 = 9cos(5theta)

What is 18

400

The equation of the tangent line to the curve:

x = 1 + lnt, y = t^2 +2

 at the point (1,3)

What is y = 2x + 1

400

The solution to the initial value problem: 

y'(t) = e^t/(2y)

y(ln2) = 1

What is 

y = sqrt(e^t - 1)

500

Evaluate 

int e^x sin(3x) dx

What is 

1/10 e^x sin(3x) - 3/10 e^x cos(3x) + C

500

Evaluate 

int_-pi^pi x e^sin(x^2)dx

What is 0
500

Evaluate 

int sqrt(16 - x^2) dx

What is 

1/2 x sqrt(16 - x^2) + 8 arcsin(x/4) + C

500

Evaluate 

int x tan^2(x) dx

What is 

x tan(x) - 1/2x^2 + ln(cos(x)) + C

500

Find the area of the region that lies inside both of the circles 

r = 2 sin(theta)

 and 

r = sin(theta) + cos(theta)

What is 

1/2 (pi - 1)

500

At what point on the curve defined by the parametric equations

x = 3t^2 + 1, y = t^3 - 1 

does the tangent line have slope 1/2

What is (4,0)

500

The solution to the initial problem

dy/dx = e^(x-y)

y(0)=ln3

What is 

y = ln(e^x + 2)