Multiplying/Dividing Polynomials
Adding/Subtracting Polynomials
Special Products
Factoring Polynomials
Miscellaneous
100

Multiply the Polynomials:

3x2 (2x4)

6x6

100

Add the Polynomials

(4x + 9) + (x - 4)

5x + 5

100

Find the product:

(-12 - n)2

n2 + 24n + 144

100

Factor the polynomial:

24x + 48y

24(x + 2y)

100

1.) Write the polynomial in standard form. 2.) Identify the degree and 3.) classify the polynomial by the number of terms.

4 + 5x2 − x  

1.) 5x2 − x + 4 

2.) Degree 2

3.) Trinomial

200

Multiply the Polynomials:

(4n - 1)(3n + 4)

12n2 + 13n - 4

200

Subtract the polynomials:

(g - 4) - (3g - 6)

-2g + 2

200

Find the product: 

(2.5 + 3a)(2.5 - 3a)

− 9a2 + 6.25

200

Solve the equation: 

(2a − 6)(3a + 15) = 0

a = 3, a = −5

200

Write the polynomial in standard form that represents the perimeter of the quadrilateral. 

12x − 3

300

Find the quotient:

(7b + 14)/(b + 2)

7

300

Add the polynomials:

(x2 + 3x + 5) + (-x2 + 6x)

9x + 5

300

Find the product:

(2m2 - 5n2)2

4m4 - 20m2n2 + 25n4

300

Solve the equation: 

4p2 − p = 0

p = 0 and 1/4

300

Solve the equation:

34x + 6 = 9x

x = −3

400

Multiply the Polynomials:

(d + 3)(d2 - 4d + 1)

d3 - d2 -11d + 3

400

Subtract the Polynomials:

(k2 + 6k- 4) - (5k3 + 7k - 3k2)

k3 + 4k- 7k - 4

400

Find the product:

(r3 - 6t4)(r3 + 6t4)

-36t8 + r6  

400

Solve the equation: 

6n2 = 15n

n = 0 and 5/2

400

Find the value of the variable. Then find the angle measures of the triangle.

 

k = 45; 45°, 90°, 45°

500

Find the quotient:

(-6k^4+15k^3-9k^2)/(3k^2)

-2k+ 5k - 3

500

Add the polynomials:

(-1 + x2 + 2x) + (1 - 2x + 2x2)

3x2

500

Find k so that 9x2 − 48x + k is the square of a binomial.

k = 64

500

Solve (4x − 5 − 16)(3x − 81) = 0

x = 7, x = 4

500

A movie theater sells 12 large bags of popcorn and 25 small bags of popcorn for $227. A large bag of popcorn costs $3.50 more than a small bag of popcorn. How much does each size cost?

small: $5, large: $8.50