Exponent Rules
Solving Exp. with Same Base
Conversions Between Log and Exp.
Expanding Logarithms
Condensing Logarithms
100

Simplify:

                           23 · 24 

When multiplying exponential expressions with the same base, add the exponents!

            23 · 24 = 23+4 = 27 = 128

100

Solve for x: 

                      2= 25   

Since the bases are the same, set the exponents equal!

                          x = 5

100

        Write log8 = 3 in exponential form


                         23 = 8

100

Expand: 

                           log (xy)


              log (xy) = log x + log y

100

Condense:

                     log(x) + log(y)


             log x + log y = log(xy)

200

Simplify:

                          35 / 3

When dividing exponential expressions with the same base, subtract the exponents!

             35 / 3= 35-2 = 33 = 27

200

Solve for x:

                          3x+1=34

         

               x + 1 = 4 ----> x=3

200

     Write 104 = 10,000 in logarithmic form


                   log10 10,000 = 4. 

200

Expand:

                          log (x/y)


             log (x/y) = log x − log y

200

Condense:

                      log(x) − log(y)


             log x − log y = log (x / y)

300

Simplify:

                           (x2 · y3)4 

Apply the power to each factor inside the parentheses!

        (x2 · y3)4 = x2x4 · y3x4 = x8 · y12

300

Solve for x:

                         52x = 58


                 2x = 8 ----> x = 4

300

      Write log25 = 2 in exponential form


                         52 = 25

300

Expand:

                         log(x2y3


log(x2y3) = logx2 + logy3 = 2 logx + 3 logy

300

Condense:

                    2log(x) + 3log(y)


   2logx + 3logy = logx2 +logy3 = log(x2y3)

400

Simplify:

                           (2· 42)2

First, express 4 as 22

    2· 4= 2· (22)= 2· 2= 23+4 =27 

Then raise to the power of 2

           (27)= 27x2 = 214 = 16,384

400

Solve for x:

                         73x+1 = 7x+7


    3x + 1 = x + 7 ---> 2x = 6 ---> x = 3

400

           Write 3x = 81 in logarithmic form 

                       and solve for x

                      log3 81 = x   

Since 81 = 34, then

                          x = 4

400

Expand:

                       log (a3b2 / c)


       log (a3b2 / c) = loga+ logb− logc 

             = 3 loga + 2 logb − logc.

400

Condense:

            1/2 log(a) + log(b) − log(c)

                1/2 loga +logb − logc 

              = loga1/2 + logb − logc 

              = log (a1/2b / c)

           

500

Simplify:

                       (3x2)3 / (9x4)2

               (3x2)= 33x2x3 = 27x6

               (9x4)= 92x4x2 = 81x8 

Now divide: 

   27x6 / 81x8 = 27x6-8/81 =1x-2/3 = 1/3x2

500

Solve for x:

                       22x / 2x+3 = 24


 22x - (x+3) = 2x-3 = 24 --> x−3 = 4 --> x = 7

500

      Write log(x2) = 3 in exponential form

            and solve for x in terms of b


              b3 = x2 ---> x = ±b3/2 

500

Expand:

                      log ((xy)5 / z3)


   log ((xy)5 / z3) = 5(logx + logy) − 3 logz 

             = 5 logx + 5 logy − 3 logz.

500

Condense:

            log(x2) − 3log(y) + 1/2log(z)

              logx2 − 3logy + 1/2logz 

           = 2logx − 3logy + logz1/2 

           = log (x2√z / y3)