Determine Re(z) when z = 3 - 2i
3
Convert z = 3 - 3i into polar form.
3sqrt(2) cis (-pi/4)
Determine the equation of the Re(z) = 5 in Cartesian Form.
x = 5
Determine the square root of 25cis(pi)
5cis(pi/2 + 2pin/ 2), n integer
5cis(pi/2), 5cis(3pi/2)=5cis(-pi/2)
Factorise x2 +9
(x+3i)(x-3i)
Mr Kettle's Primary Instrument
Trumpet
Determine the imaginary part of the conjugate of 4z if z = 3 - 2i
Im(4(3 + 2i))
Im(12+8i)
8
Double Points:
Determine the polar form of -5i
5cis(-pi/2)
Determine the equation of the Re(5z) = 20 in Cartesian Form.
5x=20
x=4
Double Points:
Determine the cube root of 8cis(pi/2)
2cis(pi/6 + 2pin/3), n integer
2cis(pi/6), 2cis(5pi/6), 2cis(9pi/6) = 2cis(-pi/2)
Factorise z2 -4x + 8
(z +2 -2i)(z +2 +2i)
The Name of Mr Kettle's Partner
Ms Lal
Determine 3u + v2 if u = 3 - 2i and v = -6 + 2i
3(3-2i) + (-6+2i)^2
9 - 6i +36 - 24i -4
41 - 30i
Convert 6cis(2pi/3) into Cartesian Form.
-3 + 3sqrt(3)i
Double Points: Determine the complex subset defined by
Im(z+2i) + Re(z-2)= 6
Im(x+yi+2i) + Re(x+yi-2)= 6
y+2 +x - 2 = 6
y = -x + 6
y int at (0,6). x int at (6,0).
Determine the square root of (4i)
4i = 4cis(pi/2)
sqrt(4i) = 2cis(pi/4 +2pin/2) , n interger2cis(pi/4), 2cis(5pi/4) = 2cis(-3pi/4)
Double Points:
Factorise z2 -6z + 20
(z - 3 + sqrt(11)i)(z - 3 - sqrt(11)i)
Mr Kettle's Favourite Colour
Blue
Double Points:
Simplify z3 if z = 5 - i
(5 - i) ^3
5^3 +3 * 5^2 *(- i) + 3 * 5 * (-i)^2 + (-i)^3
125 - 75i - 15 + i
110 -74i
Determine z^3 where z = 3cis(-pi/2).
27cis(-3pi/2)
27cis(pi/2)
Sketch the complex subset defined by |z| = 5.
x^2 + y^2 = 5^2
Circle with radius 5, centre (0,0).
Determine the square root of 3 + 3i
3sqrt(2)cis(pi/4)
sqrt(3sqrt(2))cis(pi/8 + 2pin/2), n integer
sqrt(3)forthrt(2)cis(pi/8), sqrt(3)forthrt(2)cis(-7pi/8)
Factorise u^4 - 9
(u^2 +3)(u^2 - 3)
(u+sqrt(3)i)(u-sqrt(3)i)(u+sqrt(3))(u-sqrt(3))
Double Points:
The Name of Mr Kettle's Brother
Gough
Determine the conjugate of z, where z = (4+2i)^2 +(-1 - i)(-1+i)
(4+2i)^2 +(-1 - i)(-1+i)
16 +16i - 4 + 1 + 1
14 +16i
Conjugate = 14 - 16i
Determine z5 for z = -2 - 2i
z = sqrt(8)cis(-3pi/4)
z^5 = 64sqrt(8)cis(-15pi/4)
=128sqrt(2)cis(pi/4)
Sketch the graph described by:
|z-3+2i| =2Circle with Radius = 2 and centre at (3,-2). y intercept at (3,0).
Determine the cube root of z = -sqrt(2) + sqrt(2)i
2cis(3pi/4)
cbrt(2)cis(3pi/12 + 2pin/3), n integer
cbrt(2)cis(3pi/12) = cbrt(2)cis(pi/4)
cbrt(2)cis(11pi/12)
cbrt(2)cis(19pi/12) = cbrt(2)cis(-5pi/12)
Factorise z3 -3z2 -5z + 39
(z+3)(z-3-2i)(z-3+2i)
The 6 subjects Mr Kettle did in year 12
English, Maths B/Methods, Maths C/Specialist, Music, Music Extension, Japanese