Simplifying Square Roots
Simplifying Negative Square Roots
Adding/Subtracting Complex Numbers
Multiplying Complex Numbers
Quadratic Formula and Complex Numbers
100

√9

3

100

√-16

4i

100

(3 + 2i) + (8 + 4i) 

11 + 6i

100

4(7 + 3i)

28 + 12i

100

y = x+ 12x - 3

-6+√39, -6-√39

200

√50

5√ 2

200

√-75

5i√3

200

(3 + 9i) - (2 + 8i) 

1 + i 

200

(2 + 2i)2

8i

200
y = 3x-7x + 6

(7/6) + i((√23)/6), (7/6) - i((√23)/6)

300

√45

3√ 5

300

-4√-45

-12i√5

300

(-11 + 5i) - (-21 - 15i)

10 + 20i 

300

(3 - 2i) (4 + 6i)

24 + 10i

300

y = -x2 - 6x -12

-3 + i√3, -3 - i√3

400

√175

5√ 6

400

√-128

-8i√2

400

(51i - 71 - 11i) + (31 -20i)

-40 + 20i

400
(11 + 9i) (-13 - 8i)

-71 - 205i

400

3x -3 = 2x2 

(3/4) + i √(15)/4, (3/4) - i √(15)/4

500

3√132

6√33

500

i√-225

-15

500

(123 + 456i) + (789 - 123i)

912+333i

500

(√7 - 2i) (3√7 + 12i)

45 + 6i√7

500

5x+ 5 = 5x

(1/2) + i √(3)/2, (1/2) + i √(3)/2