Simplifying Square Roots
√9
3
√-16
4i
(3 + 2i) + (8 + 4i)
11 + 6i
4(7 + 3i)
28 + 12i
y = x2 + 12x - 3
-6+√39, -6-√39
√50
5√ 2
√-75
5i√3
(3 + 9i) - (2 + 8i)
1 + i
(2 + 2i)2
8i
(7/6) + i((√23)/6), (7/6) - i((√23)/6)
√45
3√ 5
-4√-45
-12i√5
(-11 + 5i) - (-21 - 15i)
10 + 20i
(3 - 2i) (4 + 6i)
24 + 10i
y = -x2 - 6x -12
-3 + i√3, -3 - i√3
√175
5√ 6
√-128
-8i√2
(51i - 71 - 11i) + (31 -20i)
-40 + 20i
-71 - 205i
3x -3 = 2x2
(3/4) + i √(15)/4, (3/4) - i √(15)/4
3√132
6√33
i√-225
-15
(123 + 456i) + (789 - 123i)
912+333i
(√7 - 2i) (3√7 + 12i)
45 + 6i√7
5x2 + 5 = 5x
(1/2) + i √(3)/2, (1/2) + i √(3)/2