Using the Law of Sines to solve the triangle if
∠
A
=
43
∘
,
∠
C
=
65
∘
,
b
=
11
:
∠A=43∘,∠C=65∘,b=11:
72
7.8880506385798
10.482432417622
100
(7+i)/(1+2i)=
9/5-13/5i
100
(7+i)/(1+2i)=
9/5-13/5i
200
Solve for t, 0<=t<2pi
6sin(t)cos(t)=2sin(t)
1.2309594173408
,
5.0522258898388
,
0
,
pi
200
Rewrite cos(x+3*pi/4) in terms of sin(x) and cos(x)
(-sqrt(2)/2)*cos(x)+(-sqrt(2)/2)*sin(x)
200
Using the Law of Sines to find a triangle with one obtuse angle if
∠
A
=
50
∘
,
a
=
26
,
b
=
28
.
∠A=50∘,a=26,b=28.
If no answer exists, enter DNE for all answers.
124.41445
5.58555
3.3035
200
Write 5i in polar form r*exp(i*theta)
5*exp(i*pi/2)
200
Write 5i in polar form r*exp(i*theta)
5*exp(i*pi/2)
300
Solve
2(sin(w))^2+sin(w)-1=0 for all solutions 0≤w<2pi
p/6, 5pi/6, 3pi/2
300
Solve
sin(5x)cos(8x)-cos(5x)sin(8x)=-0.15 for the smallest positive solution.
0.050189424258895
300
Find a if A=65 degrees, b=12, and c=17.
16.142234950892
300
-2+3i
sqrt(13)*exp(i*2.16)
300
-2+3i
sqrt(13)*exp(i*2.16)
400
Solve
csc(3x)-5=0 for the four smallest positive solutions
Simplify cos(9x)+cos(5x)sin(9x)+sin(5x) to an expression involving a single trigonometric function.
cot
(
7
x
)
500
A pilot flies in a straight path for 1 h 30 min. She then makes a course correction, heading 10 degrees to the right of her original course, and flies 2 h in the new direction. If she maintains a constant speed of 615 mi/h, how far is she from her starting position?