f(x) = x2
g(x) = x + 2(x + 2)2
f(x) = x2
g(x) = x + 1
(x2 + 1)2
f(x) = 1/x
(-∞ , 0) U (0, ∞)
√(x)
[0, ∞)
Find the domain of √(x)
[0,∞)
f(x) = 1/x
g(x) = x2
1/x2
f(x) = x1/2
g(x) = x4
x
1/(x-1)
(-∞ , 1) U (1, ∞)
√(x-1)
[1, ∞ )
find h(g(b)): h(b) = b2 -1, g(b) = b+1
(b+1)2 -1
f(x) = x3
g(x) = x1/3
x
f(x) = x + 3
g(x) = x - 3
x + 3
2/(2x + 1)
(-∞ , -1/2) U (-1/2, ∞)
√(x+2)
[-2, ∞)
Calculate g(f(g(x))): g(x) = x+2, f(x) = 5x
5x + 12
f(x) = x4 + 5
g(x) = 1/x2
(1/x2)4 + 5
f(x) = x2 + 2x
g(x) = 4x
(4x2 + 8x)2 + 2(4x2 + 8x)
x / 4x - 8
(-∞ , 2) U (2, ∞)
√(x2-4)
(-∞ , -4) U (4, ∞)
Find f(g(c)): f(c) = c + x, g(c) = c(a)
c(a) + x
f(x) = x2 + x + 2
g(x) = x - 2
(x - 2)2 + x
f(x) = x3 + x
g(x) = x2 + 4x
((x3 + x)2 + 4(x3 + x))3 + (x3 + x)2 + 4(x3 + x)
1/(x2 + 2x - 3)
(-∞ , -3) U (-3,1) U (1,∞)
√(x2)
(-∞ , ∞ )
Find the domain of √ (x+1) / x
[-1,0) U (0, ∞)