Convert into standard form:
f(x)=(x+1)^2 +5
f(x) = x^2 +2x+6
Convert into standard form:
f(x)=4(x+1)(x+8)
f(x)=4x^2 +36x +32
Re-write the quadratic function in vertex form:
f(x)= x^ 2 − 2 x + 7
f(x)=(x-1)^2+6
Factor:
x2+8x+16
(x+4)2
Factor:
3x2 + 20x + 12
(3x+2)(x+6)
16x2-1
(4x-1)(4x+1)
Factor:
2x2 + 14
2(x2 + 7)
Convert into standard form:
f(x)=-(x+2)^2 -7
f(x)=-x^2 -4x-3
Convert into standard form:
f(x)=-(x - 4)(x - 9)
f(x)=-x^2 +13x-36
What is the key of a quadratic function in VERTEX form?
The vertex, (h, k)
Factor:
x2 + 4x - 12
(x - 2)(x + 6)
Factor:
5x2 +21x +4
(5x+1)(x+4)
x2 + 25
PRIME
Factor:
2x2 - 18
2(x + 3)(x - 3)
What is the key point of a quadratic function in STANDARD form?
Convert into standard form:
f(x)=6(x - 2)(x+6)
f(x)=6x^2+24x-72
Re-write the quadratic function in vertex form:
f(x)= x^2 −10x +8
f(x)=(x+5)^2 -17
Factor:
x2 - 24x + 80
(x - 4)(x - 20)
Factor:
3x2 + 14x + 15
(3x+5)(x+3)
1 - x2
2(x - 10)(x + 10)
Factor:
-2x2 - 4x + 30
-2(x - 3)(x + 5)
Convert into standard form:
f(x)=9(x+2)^2 +9
f(x)=9x^2 +36x +45
What are the key points of a quadratic function in INTERCEPT (factored) form?
The x-intercepts (0,p) and (0,q)
Re-write the quadratic function in vertex form:
f(x)= 9x^2 +90x + 229
f(x)= 9(x+5)^2+4
Factor:
x2 - 10x - 24
(x - 12)(x + 2)
Factor:
2x2 -13x - 7
(2x+1)(x-7)
81x2 - 49
(9x - 7)(9x + 7)
The first step of factoring is to ALWAYS?
Check for a GCF
Convert into standard form:
f(x)=-8(x-6)^2 +1
f(x)=-8x^2 +96x-287
Convert into standard form:
f(x)=-5(x+1)(x-9)
f(x)=-5x^2 +40+45
Re-write the quadratic function in vertex form:
f(x)= -6x^ 2 -12 x -15
f(x)=-6(x+1)^2 -9
Factor:
x2 - x -132
(x+11)(x-12)
Factor:
16x2 - 8x + 1
(4x - 1)2
25 - 289x2
(5 + 17x)(5 - 17x)
Factor:
-30x2 - 9x + 12
-3(2x-1)(5x+4)