Solve it
Graph it
Absolute
Sets
Sweat!!!
100

8m+7≥6m-9

m≥-8

100

5<k-2<11

7<k<13 

See Graph

100

Solve and Graph

|x+3|<10


-13<x<7

100

Let A={2,4,6,8} and B={1,3,5,7,9}

what is the set of AUB= "A Union B" ?

AUB={1,2,3,4,5,6,7,8,9}

OR

AUB={1,2,3,...,9}

100

3(8x-9)>4(6x+1)

False No Solution

-27>4

200

Solve

8-7(2r+3)≤3(r-10)

r≥1

200

Given is the interval notation:

(-∞,0] or (5,∞)

Write the inequality and Graph it 

See Graph 

x≤0 or x>5

200

Solve

|3t-2|+6=2

False 

No Solution

|x|≠negative

200

Draw a Diagram that represents A' (The Complement of set A)

See Diagram 

200

Solve and Graph

-3≤(6-q)/9≤3

See Graph 

-21≤q≤33

300

Solve 

(y-2)/2 -5≤3 or (1+2y)/3≥41

y≤18 or y≤61

300

Solve and Graph

-3(2x+1)<-15 or 1-x≥5

See Graph

x≤-4 or x>2

300

Solve 

3|x+2|+4=13

x=1 or x=-5

300

Suppose U={3, 6, 9, 12, 15, 18, 21} is the universal set and M={3, 9, 15, 21}. What is M'?

M'={6,12,18}

300

Solve and Graph 

3/4 a-6<0 and 2/3 a +4≥2

See Graph 

-3≤a<8

400

Solve 

12h-3≥15h or 5 > -0.2h+10

h≤-1 or h>25

400

Solve and Graph 


6b-1≤41 or 2b+1≥11

All Real Numbers

See Graph

b≤7 or b≥5

400

Solve and Graph 

4-3|m+2| > -14

See Graph 

-8<m<4

400

Draw the Ven Diagram that represents these sets

Let U={1,2,3,...,10}

Let A={multiples of 2}

Let B={7,8,10} 

See Graph 

400

Solve and Graph 

10n +1≥-59 or -10 -9n<26

See Graph 

n≥-6

500

Solve it 

11x-4≤6x-(3-5x)

All Real Numbers

500

Solve

2-n≤7+4n≤n+10

-1≤n≤1

500

Solve and Graph 

3|8x+5|-9≥24

x≤-2 or x≥ 3/4 

500

Let A be the set of Integers solutions that satisfy the inequality: Solve and write in set builder notation.

Hint: either write it as a partial list or as a rule

-2(x+7)≤-14+2x 

A={x| x E N, x≥0}

         or 

A={0,1,2,3,...}


500

Wow, how bold of you, or how desperate are you to try me!!! Solve and write the set A ∩ B "A intersect B". You may use a Ven Diagram, List, partial list or rule.

Let U={integers}

Let A={x| 3(x-2)-7x<6}

Let B={x| 15 (x-3)+3x<45}


A ∩ B={x| -3<x<5}

         or

A ∩ B={-2,-1,0,...,4}

        or

A ∩ B={-2,-1,0,1,2,3,4}