...of logs & exponentials
...of trig functions
...of inverse functions
...of inverse trig functions
...implicitly!
100

Find f'(x):

f(x)=e^(4x)

4e^(4x)

100

Find f'(x):

f(x)=sin(2x)

2cos(2x)

100

Let f(x)=x^3+2x-1 and let g be the inverse function of f. Notice that f(2)=11.

Find (f-1)'(11)

1/14

100

Find f'(x):

f(x)=cos^-1(x)

-1/sqrt(1-x^2)

100

Find  dy/dx in terms of x and y:

2x^3=2y^2+5

dy/dx=(3x^2)/(2y

200

Find f'(x):

f(x)=lne

0

200

Find f'(x):

f(x)=cos(x^2)

-2xsin(x^2)

200

Let g and h be inverse functions.

The following table lists a few values of g, h, and h'.

Find (g-1)'(0).

-1

200

Find f'(x):

f(x)=sin^-1(2x^2)

(4x)/sqrt(1-4x^4

200

Find  dy/dx in terms of x and y:

5y^2=2x^3-5y

dy/dx=(6x^2)/(10y+5)

300

Find f'(x):

f(x)=ln(sinx)

(cosx)/(sinx)

cotx

300

Find f'(x):

f(x)=tan(3x^2)

6xsec^2(3x^2)

300

Let g(x)=x^5+3x and let be the inverse function of g. Notice that g(1)=4.

1/8

300

Find f'(x):

f(x)=(tan^-1(5x))^2

10/(25x^2+1)

300

Find  dy/dx in terms of x and y:

3x^2y^2=4x^2-4xy

dy/dx=(4x-2y-3xy^2)/(3x^2y+2x)

400

Find f'(x):

f(x)=ln(x^3e^x)

3/x+1

400

Find f'(x):

f(x)=cos^2(x^2-2x)

-2(2x-2)cos(x^2-2x)sin(x^2-2x)

400

Let f and g be inverse functions.

The following table lists a few values of f, g, and f'.

Find g'(2).

12

400

Find f'(x):

f(x)=arccsc(4x^2)

 -(8x)/(abs(4x^2)sqrt(16x^4-1) =

-2/(xsqrt(16x^4-1)

400

Find  dy/dx in terms of x and y:

3x^2+3=ln(5xy^2)

dy/dx=(6x^2y-y)/(2x)

500

*If you don't remember the formula, use logarithmic differentiation!

Find f'(x):

f(x)=2^(3x)

3(2^(3x)ln2)

500

Find f'(x):

f(x)=csc(sinx)

-csc(sinx)cot(sinx)cosx

500

Find the equation of the tangent line to the inverse of f(x) at x=10.

f(x)=x^3+7x+2

y-1=1/10(x-10)

500

Find f'(x):

f(x)=arcsec(3x^5+x)

(15x^4+1)/(abs(3x^5+x)sqrt((3x^5+x)^2-1)

500

Find  dy/dx in terms of x and y:

sin(2x^2y^3)=3x^3+1

dy/dx=(9x-4y^3cos(2x^2y^3))/(6xy^2cos(2x^2y^3)