Vocabulary/Definitions
Derivatives
Anti-derivatives/Integral
General & Particular solutions
Bonus tie breaker
100

When do we use the chain rule? What is the formula?

Answer: its used when differentiating a 'function of a function' like f(g(x)). 

Formula: f'(x)=(g(x)) ⋅ g'(x)

                 

100

What is f'(6) when f(x)= 3x- 2x+ x+ 6x-3?

f'(x)= 15x4-8x3+3x2+12x

f'(6)= 15(6)4-8(6)3+3(6)2+12(6)

f'(6)= 17,892

Answer: 17,892

100

Solve ∫(8x3-x2+5x-1)dx

8/4x4-1/3x3+5/2x2-1x+C

2x4-1/3x3+5/2x2-1x+C

Answer: 2x4-1/3x3+5/2x2-1x+C

100

Find the particular solution of the differential equation which satisfies the given initial condition: dy/dx=3x2-2; y(0)=4

y=∫(3x2-2)dx                  (0,4)

= x3-x+c ] General solution

4=03-0+C

c=4           Answer: x3-x+4

200

When do we use the mean value theorem? What is the formula?

Answer: it's used when a function is continuous on a closed interval [a,b] and differentiable on the open interval (a,b).

Formula: f'(c)= [f(b)-f(a)]/[b-a]

200

What is the derivative of f(x)= (x2+6x-2)(3x-7)?

f(x)= (x2+6x-2)(3x-7) = 3x3+18x2-6x-7x2-42x+14

f(x)= 3x3+11x2-48x+14

f'(x)= 9x2+22x-48

Answer: 9x2+22x-48

200

Solve for ∫0(x3+2x5+3x10)dx

1/4x4+1/3x6+3/11x11 l01

[14/4+16/3+3(1)11] - 0

[1/4+1/3+3/11]= 113/132

Answer: 113/132

200

Find the particular solution of the differential equation which satisfies the given initial condition: dy/dx=1/x2: y(1)=4

∫dy/dx=∫(1/x2)dx               (1,4)

y=x-1/-1+c = -1/x+c

4=-1/1+c

4=-1 +c           Answer: y=-1/x+5

c=5


300

When do we use the product rule? What is the formula?

Answer: it's used when finding the derivative of a function in which one function is multiplied to another.

Formula: U'V + UV'  or f'(x)g(x) + f(x)g'(x)

300

What is the derivative of f(x)=x2ln(x)?

u=x2      u'=2x

v=ln(x)  v'= 1/x

2x(ln(x)) + x2(1/x)

Answer: 2x(ln(x)) + x2(1/x)

300

Find the solution of ∫(√ x +6x2)dx

∫(x1/2+2x3)dx

1/(3/2)x3/2+2x3+c

2/3x3/2+2x3+c

Answer: 2/3x3/2+2x3+c

300

What is the difference between a general solution and particular solution?

A general solution included all possible solutions while a particular solution has a specific x or y value.

400

When do we use the quotient rule? What is the formula?

Answer: it's used when finding the derivative of a function in which one function is being divided by another.

Formula: [f(x)/g(x)]'= [g(x)f'(x)-f(x)g'(x)]/g(x)2

400

What is the derivative of f(x)= (4x-2)/x2+1?

u=4x-2   u'=4

v=x2+1   v'=2x

f'(x)= 4(x2+1) - 2x(4x-2) / [(x2+1)2]

f'(x)= 4x2+4-8x2+4x / (x2+1)2

Answer:  4x2+4-8x2+4x / (x2+1)2


400

Solve ∫(2ex+6/x+ln(2))dx


∫2ex +6∫1/x + ln(2)∫dx

2e+ 6lnlxl + (ln2)x + C

Answer: 2e+ 6lnlxl + (ln2)x + C

400

Find the particular solution of the differential equation which satisfies the given initial condition: dy/dx= -2sin(x); y(π/2)= π

∫dy/dx=∫-2sin(x)             (π/2,π)

y=-2(-cosx)+c

y=2cos(x)+c

π=2cos(π/2)+c       Answer: 2cos(x)+π

π=2(0)+c       c=π

500

What is the formula for a composite formula?

Formula: (g⋅f)(x)=g(f(x))

500

Using f(x)=x-4 and g(x)=-3x3+5x, what is g(f(x)) if x=2?

g(f(x))= -3(x-4)3+5(x-4)

g(f(2))= -3(2-4)3+5(2-4)

g(f(2))= -3(-2)3+5(-2)

g(f(2))= 14        Answer: g(f(2))=14

500

Solve ∫(x3-2x2)((1/x)-5)

∫(x2-5x3-2x+10x2)dx

∫(-5x3+11x2-2x)dx

-5/4x4+11/3x3-x2+C

Answer: -5/4x4+11/3x3-x2+C

500

Find the particular solution of the differential equation which satisfies the given initial condition: dy/dx= 3/2y; y=4 and x=5

ydy=3/2dx

∫ydy=∫3/2dx

y2/2=3/2x+c

(4)2/2=3/2(4)+c     Answer: y2/2= 3/2x+2

8=6+c     C=2         *answer can be simplified more

500

What is Dr.C name?

Fritz (come on guys check your google classroom)